Supporting Information

Facile synthesis of defective ZnS-ZnO composite nanosheets for efficient piezocatalytic H₂ production

Xiaoxiao Lu,^a Xiaojing Zhao,^a Xiangyu Chen,^a Miaoqiong Xu,^a Miaoling Huang,^a Wen-Jie Chen,^a Yubin Liu,^{a*} and Xiaoyang Pan^{a*}

^a College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China.

Experimental Section.

DFT calculation:

Density functional theory (DFT) calculations were performed using DMol3 and GGA-PW91. Convergence tolerance (quality: coarse; energy: 1.0×10^{-4} Ha; maximum force 0.02 Ha/Å; maximum displacement: 0.05 Å; maximum step size: 0.3 Å). A vacuum gap was set to approximately 50 Å. The calculated perfect (0 0 2) slab model and (4 × 4) supercells consisting of four-fold unit monolayers in the hexagonal P63mc space group. The characteristics of H₂O adsorbed on (0 0 2) surfaces and the presence of S vacancy on (0 0 2) surfaces were investigated. The adsorption energy

was calculated with: $E_{ad} = E_{H_2O/slab} - E_{slab} - E_{H_2O}$. E_{slab+H_2O} is the total energy of H₂O adsorbed on (0 0 2) surface, E_{slab} denotes the tatal energy of surface. E_{H_2O} is the energy of an isolated H₂O. According the present definition, a higher value of E_{ad} means stronger energy of absorption.

Fig. S1 The XRD patterns of the $ZnS(en)_{0.5}$.

Fig. S2 SEM image of the ZnS(en)_{0.5}.

Fig. S3 (a) HAADF-STEM image of ZnS-ZnO; (b-f) Elmental mapping images of ZnS-ZnO.

Fig. S4 XPS spectra (S 2p) of the ZnS, ZnS-ZnO and ZnO.

Fig. S5. (b) Average H_2 production in one hour over the samples (300 W, 45kHz, 10vol% CH₃OH).

Note: The blank sample is performed without catalyst. TiO_2 is prepared according to our previous report.¹

NO	Sample	Sample	Energy	H ₂ evolution	Refererenc
•	-	Dosage	Source	rates	e
				$($ mmo $l g^{-1}$	
				$h^{-1})^{-1}$	
1	ZnS-ZnO	5mg cat	45 kHz, 300	4.65	This work
		10vol% MeOH	W		
2	Zn–N–C dipoles	20 mg cat	2500 r min^{-1}	0.0146	2
		7vol% MeOH			
3	$(\mathbf{D}; \mathbf{N}_{0}) \mathbf{T}; \mathbf{O}$	30mg cat	40 kHz	2	3
	$(D1_{0.5}Na_{0.5})11O_3$	10vol% MeOH			
4	Ti ₃ C ₂ /SAMs-NH	10 mg cat	45 kHz, 600	0.184	4
	2	0.05 M	W		
		Na_2SO_3			
5	MoS_2	20 mg cat	40 kHz, 110	0.029	5
		0.01M FeSO ₄	W		
6	WSe ₂	20 mg cat	40 kHz, 110	0.011	5
_		0.01M FeSO ₄	W		
7	$0.7BiFeO_3-0.3B$	30mg cat	40 kHz, 100	1.322	6
0	$a TiO_3$	MeOH	W	0.45	-
8	ZnSnO ₃	10mg cat	40 kHz,250	3.45	1
	nanowire	50V01%	W		
0		50 mg cot	40 kHz 200	0.42	0
9	011-511103	20vol% MeOH	40 KHZ, 500 W	0.43	0
10	BiFeO ₂	10 mg cat	40 kHz, 100	0.114	9
10		0.05M Na ₂ SO ₂	W	VIII	-
11	BaTiO ₃	10mg cat	40 kHz, 100	0.092	10
	nanosheet	15vol%	W	-	-
		triethanolamin			
		e			

Table S1. Catalytic application for H₂ production driven by Ultrasonic vibration and corresponding experimental parameters.

Fig. S6. PFM amplitude image, amplitude loop and the phase switching loop of (a, d, g) ZnS, (b, e, h) ZnS-ZnO and (c, f, i) ZnO.

Fig. S7. SEM image of ZnS spheres (ZnS-S).

Note: The sample is synthesized as follows. 768 mg of $Zn(Ac)_2 2H_2O$, and 404 mg of NH_2CSNH_2 were dissolved in 70 mL of H_2O and 10 mL of $C_2H_8N_2$. After stirring vigorously for 30 min, the solution was transferred to a 100 mL Teflon-lined stainless steel autoclave and kept at 160 °C for 10 h. After cooling to room temperature, the precipitate was collected by centrifugation and washed with ultrapure water and anhydrous ethanol (3 times). Finally, it was dried in a vacuum oven at 60 °C overnight.

Fig. S8. (a) XRD patterns of ZnS spheres (ZnS-S) and ZnS spheres with sulfur vacancy (ZnS-S-SV); (b) piezocatalytic H_2 production over the samples (300 W, 45k Hz); (c) Stability test of the piezocatalytic H_2 production of ZnS-S at 45 kHz and 300 W; (d) Stability test of the piezocatalytic H_2 production of ZnS-S-SV at 45 kHz and 300 W.

Note: ZnS spheres with sulfur vacancy (ZnS-S-SV) was synthesized by thermal treatment of ZnS-S at 400 $\,^{\circ}$ C for 2 hours under N₂ atmospheres.

Fig. S9. (a) Piezo-current response of ZnS spheres (ZnS-S) and ZnS spheres with sulfur vacancy (ZnS-S-SV); (b) EIS Nyquist plots of the samples.

Fig. S10. (a) (002) surface of ZnS; (b) H₂O adsorption on (002) surface of ZnS; (c) (002) surface of ZnS with S vacancy; (d) H₂O adsorption on (002) surface of ZnS with S vacancy.

Table S2. Adsorption energy of H_2O on (002) surface of ZnS.						
	Total Energy before	Total energy after adsorption /Ha	Adsorption energy /eV			
	adsorption /Ha					
ZnS	-58803.46	-58879.96	-2.14			
ZnS with S	-58405.18	-58481.66	-3.05			
vacancy						

Fig. S11 Mott-Schottky plot of the ZnS-ZnO (a), ZnO (b).

References

1. Pan, X.; Gao, X.; Chen, X.; Lee, H. N.; Liu, Y.; Withers, R. L.; Yi, Z., ACS Catal. **2017,** 7 (10), 6991-6998.

2. Hu, P.; Xu, Y.; Lei, Y.; Yuan, J.; Lei, R.; Hu, R.; Chen, J.; Xu, D.; Zhang, S.; Liu, P.; Zhang, X.; Qiu, X.; Feng, W., *J. Energy Chem.* **2022**, *69*, 115-122.

3. Liu, D.; Sun, X.; Tan, L.; Zhang, J.; Jin, C.-C.; Wang, F., Ceram. Inter. 2023, 49 (12), 20343-20350.

4. Wang, S.; Tian, W.; Han, J.; Li, N.; Chen, D.; Xu, Q.; Li, H.; Lu, J., ACS Appl. *Mater. Interfaces* **2023**, *15* (47), 55129-55138.

5. Sun, Y.; Li, X.; Vijayakumar, A.; Liu, H.; Wang, C.; Zhang, S.; Fu, Z.; Lu, Y.; Cheng, Z.; *ACS Appl. Mater. Interfaces*, **2021**, *13*, 11050-11057.

6. Sun, Y.; Li, X.; Vijayakumar, A.; Liu, H.; Wang, C.; Zhang, S.; Fu, Z.; Lu, Y.; Cheng, Z., ACS Appl. Mater. Interfaces **2021**, 13 (9), 11050-11057.

7. Wang, Y.-C.; Wu, J. M., Adv. Fun. Mater. 2020, 30 (5), 1907619.

8. Jiang, Y.; Xie, J.; Lu, Z.; Hu, J.; Hao, A.; Cao, Y., J. Colloid and Interface Sci. **2022**, *612*, 111-120.

9. Yang, G.; Chen, Q.; Wang, W.; Wu, S.; Gao, B.; Xu, Y.; Chen, Z.; Zhong, S.; Chen, J.; Bai, S., *ACS Appl. Mater. Interfaces* **2021**, *13* (13), 15305-15314.

10. Yu, C.; Tan, M.; Li, Y.; Liu, C.; Yin, R.; Meng, H.; Su, Y.; Qiao, L.; Bai, Y., J. Colloid and Interface Sci. 2021, 596, 288-296.