## **Supporting Information**

## A Bionic Palladium Metal-organic Framework Based on Fluorescence Sensing Enhancement Mechanism for Sensitive Detection of Phorate

Mengyao Li <sup>a, b</sup>, Zhijie Wang <sup>b</sup>, Hongyu Tang <sup>b</sup>, Jingru Yang <sup>b</sup>, Xianwei Luo <sup>b</sup>,

Mingxin Yang <sup>b</sup>, Zhicai Liu <sup>b</sup>, Haoyang Hao <sup>b</sup>, Jinhong Jiang <sup>c</sup>, Meng Wang <sup>b</sup>, Lingna

Zheng <sup>b</sup>, Chenyan Ma <sup>b</sup>, Gengmei Xing <sup>b</sup>, Hongbin Wang <sup>\*a</sup> and Juan Li <sup>\*b</sup>

<sup>a</sup> School of Biological Engineering, Tianjin University of Science and Technology,

Tianjin 300457, Tianjin, China

<sup>b</sup> CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China

<sup>c</sup> Hangzhou Institute of Medicine Chinese Academy of Sciences, Hangzhou 310063,
China

\*Email: whb@tust.edu.cn

lijuan@ihep.ac.cn



Supplementary Figure 1. SEM images of Pd-MOF.

| Item                                               | Result                      |
|----------------------------------------------------|-----------------------------|
| BET Surface Area                                   | 232.5095 m <sup>2</sup> /g  |
| t-Plot Micropore Area                              | 152.6034 m²/g               |
| t-Plot external surface area                       | 79.9061 m <sup>2</sup> /g   |
| Single point adsorption total pore volume of pores | 0.115689 cm <sup>3</sup> /g |
| t-Plot micropore volume                            | 0.058969 cm <sup>3</sup> /g |
| Adsorption average pore diameter                   | 1.9903 nm                   |
| BJH Adsorption average pore diameter               | 3.8167 nm                   |

## Supplementary table 1. Detection result of BET

| Probe         | Range              | LOD         | Ref.      |
|---------------|--------------------|-------------|-----------|
| CBZ-BOD@ZIF-8 | 1-6 µg/mL          | 1.15 ng/mL  | 1         |
| LysFP@ZIF-8   | 0-10 μg/mL         | 79 ng/mL    | 2         |
| TPE-Peptide   | 1-100 µM           | 15.07 μg/kg | 3         |
| MPBOD         | 0-10 µg/mL         | 2.15 μg/mL  | 4         |
| SiQDs/OPD     | 0.125-12.5 ng/mL   | 0.05 ng/mL  | 5         |
| AuNP          | 12.44-136.22 ng/mL | 12.44 ng/mL | 6         |
| Pd-MOF        | 100-0.001 ppb      | 0.001 ppb   | This work |

Supplementary table 2. Comparison with previously reported OPPs detection

methods

Supplementary table 3. Comparison of energy gap between Pd-MOFs and other

| MOFs        | Energy gap (eV) | Ref.      |
|-------------|-----------------|-----------|
| Zr-TCPP(Pd) | 1.96            | 7         |
| Zr-TCPP     | 1.68            | ,         |
| Zn-MOF      | 2.988           | 8         |
| Cd-TCPP     | 1.86            | 9         |
| Fe-TCPP     | 1.473           | 10        |
| Pd-MOFs     | 0.025           | This work |

MOFs

| Sample                | Found (ppb)      | Recovery (%)    | RSD(%) |
|-----------------------|------------------|-----------------|--------|
| Tap water             | 0                | 0               | 0      |
|                       | $93.05\pm0.08$   | $93.05\pm0.06$  | 6.46   |
|                       | $8.77\pm0.18$    | $87.69\pm0.02$  | 2.06   |
|                       | $1.06\pm0.04$    | $105.66\pm0.04$ | 4.06   |
|                       | 0                | 0               | 0      |
| Door ringing water    | $100.83\pm0.10$  | $100.83\pm0.05$ | 4.81   |
| i cei mising water    | $9.37\pm0.58$    | $93.68\pm0.06$  | 6.15   |
|                       | $1.00\pm0.07$    | $99.65\pm0.07$  | 7.40   |
|                       | 0                | 0               | 0      |
| Deeniniee             | $100.69\pm0.08$  | $100.69\pm0.05$ | 4.95   |
| Pear juice            | $10.56 \pm 1.18$ | $105.62\pm0.12$ | 11.16  |
|                       | $1.06\pm0.07$    | $106.12\pm0.07$ | 6.16   |
|                       | 0                | 0               | 0      |
| Cabbaga ringing water | $96.03\pm0.17$   | $96.03\pm0.08$  | 8.25   |
| Cabbage rinsing water | $9.96\pm0.52$    | $99.57\pm0.05$  | 5.21   |
|                       | $1.01\pm0.10$    | $101.47\pm0.10$ | 9.94   |
|                       | 0                | 0               | 0      |
| Caliba ca inica       | $99.05\pm0.09$   | $99.05\pm0.05$  | 4.67   |
| Cabbage juice         | $9.85\pm0.58$    | $98.48\pm0.06$  | 5.88   |
|                       | $0.96\pm0.04$    | $96.19\pm0.04$  | 4.36   |

Supplementary table 4. Determination of phorate in samples

## References

- 1. B. Shen, C. Ma, Y. Ji, J. Dai, B. Li, X. Zhang and H. Huang, ACS Appl Mater Interfaces, 2021, 13, 8718-8726.
- B. Shen, X. Zhang, J. Dai, Y. Ji and H. Huang, *J Hazard Mater*, 2021, 407, 124342.
- J. Wang, J. Zhang, J. Wang, G. Fang, J. Liu and S. Wang, *Journal of Hazardous Materials*, 2020, 389, 122074.
- 4. C. Ma, J. Wu, W. Sun, Y. Hou, G. Zhong, R. Gao, B. Shen and H. Huang, *Sensors and Actuators B: Chemical*, 2020, **325**, 128798.
- R. Jin, D. Kong, X. Yan, X. Zhao, H. Li, F. Liu, P. Sun, Y. Lin and G. Lu, ACS Appl Mater Interfaces, 2019, 11, 27605-27614.
- 6. J. Sun, L. Guo, Y. Bao and J. Xie, *Biosens Bioelectron*, 2011, 28, 152-157.
- H. Zhang, Q. Li, B. Weng, L. Xiao, Z. Tian, J. Yang, T. Liu and F. Lai, Chemical Engineering Journal, 2022, 442, 136144.
- L. Yu, K. W. Lee, Y. Q. Zhao, Y. Xu, Y. Zhou, M. Li and J. S. Kim, *Inorg Chem*, 2023, 62, 18767-18778.
- 9. W. Xu, J. Wang, H. Yu, P. Liu, G.-R. Zhang, H. Huang and D. Mei, *Applied Catalysis B: Environmental*, 2022, **308**, 121218.
- M. Li, A. Shen, M. Du, X. Hao, X. Du, J. Yuan, S. Ma, Y. Zhao, L. Hou, Z. Li and Y. Yang, *Journal of Environmental Chemical Engineering*, 2022, 10, 108944.