Supplementary Information (SI)

Activation and Electrochemical Reduction of Carbon Dioxide by Transition Metal Atom-Doped Copper Clusters

Manish Kumar Mohanta and Puru Jena*

Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284,

USA

*E-mail: <u>pjena@vcu.edu</u>

Computational Details:

The DFT calculation for the slab model and CO₂RR are performed using the VASP code.^{1,2} The projector-augmented wave (PAW) method is used to describe ion-electron interaction.³ The generalized gradient approximation (GGA) due to Perdew-Burke-Ernzerhof (PBE) is used to treat the exchange-correlation interaction of electrons.⁴ The cut-off energy is set to 500 eV. The convergence criteria for energy and force are set to 10^{-6} eV and 0.01 eV/Å, respectively. A vacuum space larger than 20 Å is used to avoid the interaction between adjacent layers. A 4-atomic thick layer of Cu (111) surface having 64 atoms is used to study the interaction between Cu-flat surface and CO₂. The bottom two layers of Cu (111) surface are fixed during structure relaxation and a fine k-mesh of $2 \times 2 \times 1$ is used. The van der Waals (vdW) correction is treated using Grime's DFT-D3 method.⁵ For CO₂ reduction a vacuum of 15 Å is used along all the directions for clusters. All clusters are relaxed using the criteria mentioned before.

Figure S1 Percentage contribution of transition metal (X) atoms to HOMO and LUMO. Group-1 and 2 represent 3d and 4d metal atom doping.

Figure S2 (a) Molecular surface map of average local ionization energy (\bar{I}) ; blue colour highlights the regions having relatively low \bar{I} value indicating favourable sites for an electrophilic attack, (b) magnetic moment of XCu₁₂ clusters (black curve) and isolated single TM of both 3d and 4d elements (orange curve).

Figure S3 Interaction of CO_2 (a) with the Cu (111) surface where the four atomic layers are configured with the bottom two layers fixed at their bulk positions and the top two layers relaxed; (b) with various pure copper clusters.

Figure S4 Electronic charge transfer to CO₂ molecule

ZrCu ₁₂ / NbCu ₁₂ / MoCu ₁₂				TcCu ₁₂ / RuCu ₁₂ / RhCu ₁₂ / PdCu ₁₂ / AgCu ₁₂													
Angle	1.00	-1.00	0.94	1.00	0.94	1.00	-0.93	Angle	1.00	-0.01	-0.44	-0.89	-0.39	0.22	-0.80		1.00
Bond elongation	-1.00	1.00	-0.96	-1.00	-0.96	-1.00	0.95	Bond elongation	-0.01	1.00	0.68	0.39	0.70	0.82	0.35		- 0.50
Ionization potential	0.94	-0.96	1.00	0.97	1.00	0.96	-1.00	Ionization potential	-0.44	0.68	1.00	0.51	1.00	0.76	0.87		
Binding energy	1.00	-1.00	0.97	1.00	0.97	1.00	-0.95	Binding energy	-0.89	0.39	0.51	1.00	0.47	0.01	0.73		0.00
Valence electron	0.94	-0.96	1.00	0.97	1.00	0.96	-1.00	Valence	-0.39	0.70	1.00	0.47	1.00	0.79	0.84		
Charge transfer	1.00	-1.00	0.96	1.00	0.96	1.00	-0.95	Charge	- 0.22	0.82	0.76	0.01	0.79	1.00	-0.65		-0.50
Polarizability -	-0.93	0.95	-1.00	-0.95	-1.00	-0.95	1.00	Polarizability	-0.80	0.35	0.87	0.73	0.84	0.37	1.00		
	Angle	Bond elongation	Ionization potential	Binding energy	Valence electron	Charge transfer	Polarizability		Angle -	Bond elongation	Ionization potential	Binding energy	Valence electron	Charge transfer	Polarizability -		-1.00

Figure S5 Pearson correlation plot; angle refers to O=C=O bond angle, bond length refers to the percentage change in C-O bond length.

Table S1 Energy of clusters with different spin states							
System	Energy (Hartree)/ Spin multiplicity						
-	1	3	5				
CrCu12	-20731.698548	-20731.657193	-20731.619296				
MoCu12	-19755.336672	-19755.204089	-19755.172644				
TiCu12	-20536.498724	-20536.503518	-20536.439712				
ZrCu12	-19734.105941	-19734.111514	-19734.036121				
NiCu12	-21195.343461	-21195.350669	-21195.363199				
PdCu12	-19814.938326	-19814.945291	-19814.958796				
FeCu12	-20950.706185	-20950.731620	-20950.697409				
RuCu12	-19781.991393	-19782.001452	-19781.885233				
CdCu12	-19854.688203	-19854.694261	-19854.705657				
ZnCu12	-21466.356516	-21466.363294	-21466.373045				
	Energy (Hartree)/ Spin Multiplicity						
	2	4	6				
ScCu12	-20447.702806	-20447.706278	-20447.639760				
YCu12	-19725.235274	-19725.239097	-19725.158204				
CoCu12	-21069.796764	-21069.806252	-21069.771549				
RhCu12	-19797.644754	-19797.649937	-19797.543621				
VCu12	-20631.001801	-20630.996782	-20630.939323				
NbCu12	-19744.096987	-19744.022322	-19743.923174				
MnCu12	-20838.030001	-20837.991075	-20837.954697				
TcCu12	-19767.919575	-19767.841454	-19767.768779				
Cu13	-21327.529145	-21327.532575	-21327.541370				
AgCu12	-19833.954048	-19833.972613	-19833.981938				

Table	S2 List of diffe	rent parame	ters used fo	or Pearson con	rrelation	plot.	
Name (XCu ₁₂)	Bending angle of O=C=O (degree)	% Increase in bond length	Ionization potential (eV)	Binding energy of CO ₂ (eV)	Valence electron	Charge transfer to CO ₂ (e)	Polarizabilit y (a. u)
Sc	125.26	21.44	6.4	3.1	15	-0.198	301.78
Ti	126.49	20.05	6.42	2.94	16	-0.175	293.1
V	128.77	16.92	6.57	2.08	17	-0.155	291.59
Cr	136.63	7.41	7.45	1.37	18	-0.056	298.428
Mn	135.42	8.08	5.24	1.89	19	-0.105	297.925
Fe	135.04	8.44	5.38	1.9	20	-0.102	305.66
Со	135.74	8.06	5.57	1.8	21	-0.084	313.92
Ni	134.78	8.65	5.75	2.22	22	-0.109	321.35
Cu	134.91	8.736	6.1	2.185	23	-0.09	322.765
Zn	122.68	25.037	5.84	3.947	24	-0.255	329.481
Zr	115.22	25.82	6.52	3.58	16	-0.638	308.937
Nb	127.87	14.67	6.59	1.81	17	-0.361	298.90
Мо	130.82	11.21	6.66	1.17	18	-0.267	287.494
Tc	126.45	11	4.34	2.79	19	-0.315	325.746
Ru	119.17	13.3	4.83	4.32	20	-0.327	341.868
Rh	120.19	13.06	5.22	4.03	21	-0.312	348.908
Pd	120.47	11.14	5.6	3.62	22	-0.31	350.948
Ag	122.26	25.93	5.97	4.02	23	-0.289	348.609

Table S3 Binding energy of H ₂ O on clusters (H-O-H bond angle: 103.97 degree; H-O							
bond length: 0.968 Å)							
	Binding Energy (eV)	H-O bond length (Å)	$\angle H - O - H$ (degree)				
CrCu ₁₂	0.59	0.974	106.19				
MnCu ₁₂	0.42	0.974	106.2				
FeCu ₁₂	0.68	0.977	105.48				
CoCu ₁₂	0.70	0.974	106.46				
NiCu ₁₂	0.69	0.974	106.45				
Cu ₁₃	0.57	0.975	106.54				

Table S4 The number of d electrons (NTM), atomic radius (rTM) and periodic number							
(n) of transition metals and their corresponding descriptor $(\Phi)^6$							
	N _{TM}	$r_{TM}/\text{\AA}$	n	Φ			
Cr	5	1.66	3	1.00			
Mn	5	1.61	3	1.04			
Fe	6	1.56	3	1.28			
Со	7	1.52	3	1.54			
Ni	8	1.49	3	1.79			
Cu	10	1.45	3	2.3			

Table S5 Magnetic moment and Mulliken spin population analysis of TM-doped clusters

ciustei s				
Cluster	Magnetic moment	Mulliken spin population analysis		
	of cluster (µ _B)	Spin population (a.u.) on central TM	Avg. spin population (a.u.) on outer Cu	
CrCu ₁₂	0	/	/	
MnCu ₁₂	1	2.57	-0.13	
FeCu ₁₂	2	2.041	-0.003	
CoCu ₁₂	3	1.051	0.16	
NiCu ₁₂	4	0.496	0.29	
Cu ₁₃	5	0.442	0.38	

References:

- 1 G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169–11186.
- 2 G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15–50.
- 3 P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953–17979.
- 4 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- 5 S. Grimme, J. Comput. Chem., 2006, 27, 1787–1799.
- 6 E. Clementi, D. L. Raimondi and W. P. Reinhardt, J. Chem. Phys., 1967, 47, 1300-1307.