Electronic Supporting Information (ESI)

Tuning mucoadhesion and mucopenetration in self-assembled

poly(lactic acid)-block-poly(oligoethylene glycol methacrylate) block

copolymer nanoparticles by controlling side-chain lengths

Ridhdhi Dave, Jon Mofford, Emily-Anne Hicks, Andrew Singh, Heather Sheardown^{*}, and Todd Hoare^{*}

Department of Chemical Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, Canada, L8S 4L7

* To whom correspondence should be addressed

E-mail: hoaretr@mcmaster.ca (T. Hoare); sheardow@mcmaster.ca (H. Sheardown)

1. Modified Ussing Chamber Diffusion System

Figure S1: Schematic of modified Ussing chamber diffusion system used to measure nanoparticle diffusion through a mucosal membrane.

2. PLA-POEGMA_n Polymer GPC Traces

Figure S2: Molecular weight distribution of PLA-PEG polymer dissolved in DMF with 25 mM LiBr (2 mg/mL polymer concentration).

Figure S3: Molecular weight distribution of PLA-POEGMA_{n=2} polymer dissolved in DMF with 25 mM LiBr (2 mg/mL polymer concentration).

Figure S4: Molecular weight distribution of PLA-PO10 polymer dissolved in DMF with 25 mM LiBr (2 mg/mL polymer concentration).

Figure S5: Molecular weight distribution of PLA-POEGMA_{n=8,9} polymer dissolved in DMF with 25 mM LiBr (2 mg/mL polymer concentration).

Figure S6: Molecular weight distribution of PLA-POEGMA_{n=20} polymer dissolved in DMF with 25 mM LiBr (2 mg/mL polymer concentration).

Figure S7: Molecular weight distribution of PLA-POEGMA_{n=40} polymer dissolved in DMF with 25 mM LiBr (2 mg/mL polymer concentration).

3. PLA-POEGMA_n Polymer ¹H NMR Spectra

Figure S8: ¹H NMR spectra of PLA-POEGMA_{n=2} polymer dissolved in deuterated chloroform (10 mg/mL polymer concentration).

Figure S9: ¹H NMR spectra of PLA-PO10 polymer dissolved in deuterated chloroform (10 mg/mL polymer concentration).

Figure S10: ¹H NMR spectra of PLA-POEGMA_{n=8,9} polymer dissolved in deuterated chloroform (10 mg/mL polymer concentration).

Figure S11: ¹H NMR spectra of PLA-POEGMA_{n=20} polymer dissolved in deuterated chloroform (10 mg/mL polymer concentration).

Figure S12: ¹H NMR spectra of PLA-POEGMA_{n=40} polymer dissolved in deuterated chloroform (10 mg/mL polymer concentration).

4. Rheological Synergism Measurements – Viscosity

Figure S13: Viscosity as a function of shear rate for PLA-POEGMA_nNPs incubated with 10 w/w% of mucin.

Figure S14: Viscosity synergism parameter as a function of shear rate for PLA-POEGMA_n NPs incubated with 10 w/w% of mucin.

5. Rheological Synergism Measurements - Oscillatory Rheology

Figure S15: Storage modulus as a functional of angular frequency for PLA-POEGMA_{n=2} NPs incubated with 10 w/w% mucin.

Figure S16: Storage modulus as a functional of angular frequency for PLA-PO10 NPs incubated with 10 w/w% mucin.

Figure S17: Storage modulus as a functional of angular frequency for PLA-POEGMA_{n=8,9} NPs incubated with 10 w/w% mucin.

Figure S18: Storage modulus as a functional of angular frequency for PLA-POEGMA_{n=20} NPs incubated with 10 w/w% mucin.

Figure S19: Storage modulus as a functional of angular frequency for PLA-POEGMA_{n=40} NPs incubated with 10 w/w% mucin.

6. Raw Thermograms of Isothermal Titration Calorimetry Studies

Figure S20: Heat rate as a functional of time for PLA-PO10 NPs injected into 0.1 mg/mL mucin over 20 injections and a period of 100 mins.

Figure S21: Heat rate as a functional of time for PLA-POEGMA_{n=8,9} NPs injected into 0.1 mg/mL mucin over 20 injections and a period of 100 mins.

Figure S22: Heat rate as a functional of time for PLA-POEGMA_{n=20} NPs injected into 0.1 mg/mL mucin over 20 injections and a period of 100 mins.

Figure S23: Heat rate as a functional of time for PLA-POEGMA_{n=40} NPs injected into 0.1 mg/mL mucin over 20 injections and a period of 100 mins.

7. Mucoadhesive Screening via Particle Size Measurements

Figure S24: Particle size data for PLA-POEGMA_n particles (suspended in MIQ at a concentration of 0.25 mg/mL) incubated with mucin (0.5 mg/mL) over a 12-day observation period.

8. H&E Staining of Corneas Following Nanoparticle Treatment

Figure S25: H&E-stained histology slices for rat eyes treated with PLA-PO10 NPs daily with an instillation of 20 μ L of 5 mg/mL over a 7-day period.

Figure S26: H&E-stained histology slices for rat eyes treated with PLA-POEGMA_{n=8,9} NPs daily with an instillation of 20 μ L of 5 mg/mL over a 7-day period.

Figure S27: H&E-stained histology slices for rat eyes treated with PLA-POEGMA_{n=20} NPs daily with an instillation of 20 μ L of 5 mg/mL over a 7-day period.

Figure S28: H&E-stained histology slices for rat eyes treated with PLA-POEGMA_{n=40} NPs daily with an instillation of 20 μ L of 5 mg/mL over a 7-day period.

Figure S29: H&E-stained histology slices for rat eyes treated with saline as a control daily with an instillation of 20 μ L of 5 mg/mL over a 7-day period.