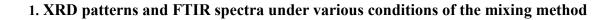
Supporting information

Nanoscale chirality generated in zinc(II) orthophosphate clusters: Evidence by vibrational circular dichroism

Sumio Aisawa,^{*a} Nami Horiguchi,^a Chika Chida,^a Jing Sang,^a Hidetoshi Hirahara,^a Akihiko Yamagishi^b and Hisako Sato^{*c}


^a Faculty of Science and Engineering, Iwate University, 4-3-5 Morioka, Iwate 020-8551, Japan e-mail:aisawa@iwate-u.ac.jp

^b Faculty of Medicine, Toho University, 5-21-16 Oomori-nishi, Ota-ku, Tokyo, 143-8540, Japan

^c Faculty of Science Ehime University, 2-5, Bunkyo-cho, Matsuyama, 790-8577, Japan e-mail: <u>sato.hisako.yq@ehime-u.ac.jp</u>

Contents:

- 1. XRD patterns and FTIR spectra under various conditions of the mixing method
- 2. TG/DTA curves under various conditions of the mixing conditions
- **3.** XPS spectra of *R* or *S*-BNDHP⁻/LZH before and after calcination at 800°C
- 4. The deconvoluted XPS spectra of *R*-BNDHP⁻/LZH before and after calcination at 800°C
- 5. SEM images of R- or S-BNDHP⁻/LZH before and after calcination at 800°C.
- 6. Experimental solid-state IR and VCD spectra of *R* and *S*-BNDHPH
- 7. IR and VCD spectra calculated for the intercalation model
- 8. IR and VCD spectra calculated for the model clusters truncated from α or γ Zn₃(PO₄)₂ crystals
- 9. IR and VCD spectra calculated for the model clusters composed of α -Zn₃(PO₄)₂ and ZnO at various ratios
- 10. IR and VCD spectra calculated for the dimer model of zinc(II) orthophosphate cluster

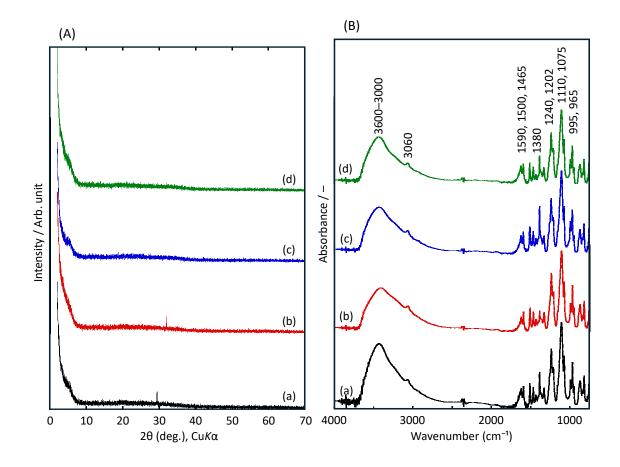


Figure S1. (A) XRD patterns and (B) FT-IR spectra of BNDHP⁻/LZH, respectively: (a) *R*-BNDHP⁻/LZH (pH 3.8, 40°C), (b) *S*-BNDHP⁻/LZH (pH 3.8, 40°C), (c) *R*-BNDHP⁻/LZH (pH 3.8, 60°C) and (d) *S*-BNDHP⁻/LZH (pH 3.8, 60°C).

2. TG/DTA curves of under various conditions of mixing conditions

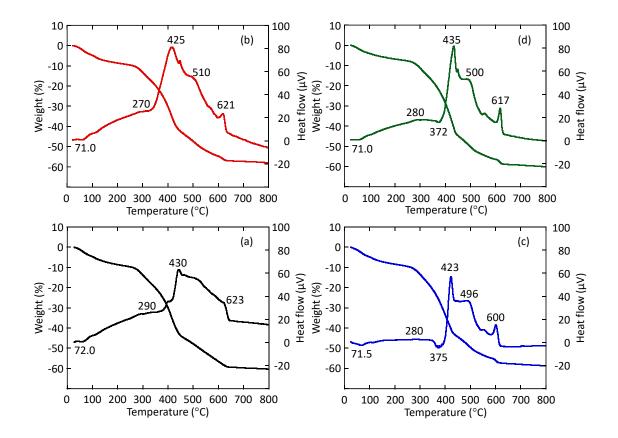
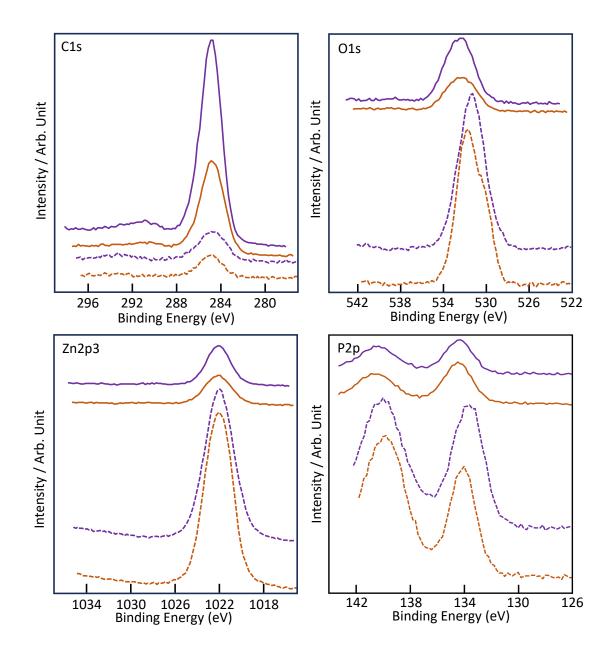



Figure S2. TG/DTA curves of (a) *R*-BNDHP⁻/LZH (pH 3.8, 40°C), (b) *S*-BNDHP⁻/LZH (pH 3.8, 40°C), (c) *R*-BNDHP⁻/LZH (pH 3.8, 60°C) and (d) *S*-BNDHP⁻/LZH (pH 3.8, 60°C).

3. XPS spectra of *R*- or *S*-BNDHP⁻/LZH before and after calcination at 800°C

Figure S3. XPS spectra of C1s, O1s, Zn2p3 and P2p of BNDHP⁻/LZH before and after calcination at 800°C: purple and brown lines for *R*-BNDHP⁻/LZH and *S*-BNDHP⁻/LZH, respectively.

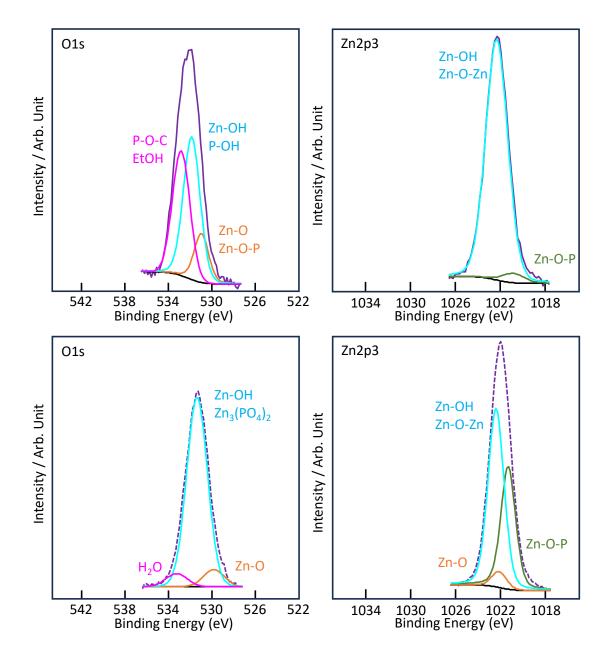


Figure S4. Deconvoluted XPS spectra of O1s (left) and Zn2p3 (right) of *R*-BNDHP⁻/LZH before (upper part) and after (lower part) calcination at 800°C, respectively.

5. SEM images of *R*- or *S*-BNDHP⁻/LZH before and after calcination at 800°C

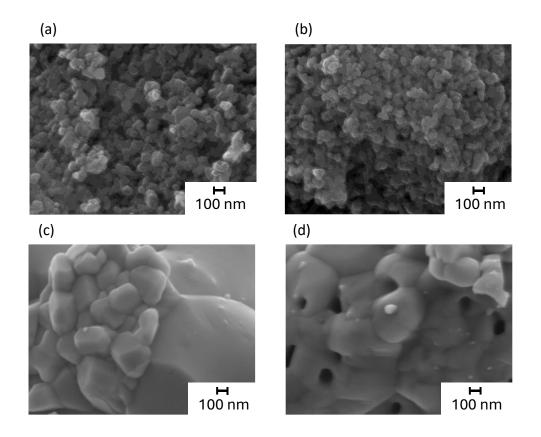


Figure S5. SEM images of (a) *R*- BNDHP⁻/LZH (pH 5.0, 60°C), (b) *S*-BNDHP⁻/LZH (pH 5.0, 60°C), (c) *R*-BNDHP⁻/LZH (pH 5.0, 60°C) after calcination at 800°C and (d) *S*-BNDHP⁻/LZH (pH 5.0, 60°C) after calcination at 800°C.

6. Experimental solid-state IR and VCD spectra of *R*- and *S*-BNDHPH

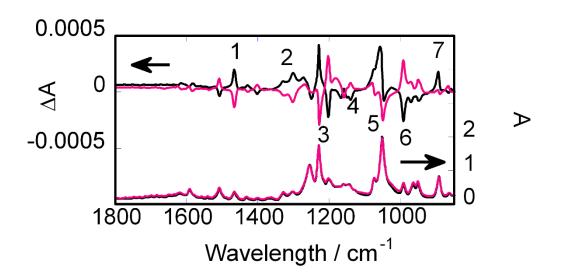


Figure S6. Experimental IR (lower) and VCD (upper) spectra: black and red curves are *R*-BNDHPH and *S*-BNDHPH of KBr pellets, respectively. Numbers show the correspondence between experimental of *R*-BNDHP-/LZH and *S*-BNDHP-/LZH in the text (Figure 4).

7. IR and VCD spectra calculated for the intercalation model

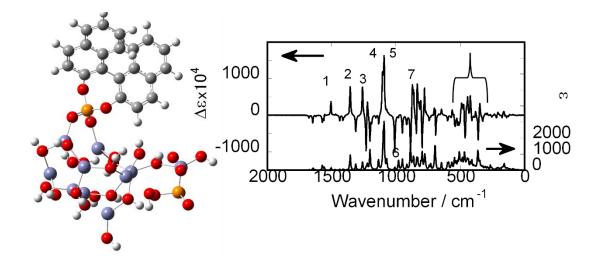
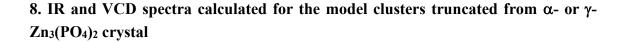



Figure S7. IR and VCD spectra calculated for the model clusters truncated LZH. *R*-BNDHP⁻ + PO_4^- / $(Zn(OH)_2)_{10}$. The blanketed region shows the induction of chirality around Zn ions due to the chiral organic ligands.

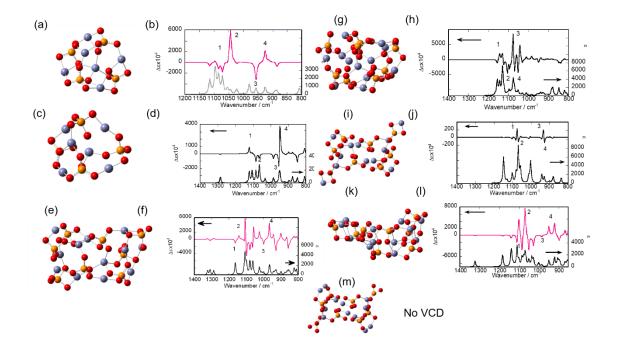
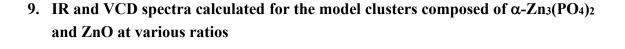



Figure S8. IR and VCD spectra calculated for the model clusters truncated from α - or γ -Zn₃(PO₄)₂ crystal. Red and black spectra correspond to the ones experimentally observed for the products calcinated from *S*-BNDHP⁻/LZH and *R*- BNDHP⁻/LZH, respectively. The clusters are constructed as below:

- (a) 2 units of $\{Zn_3(PO_4)_2\}$ from γ -Zn₃(PO₄)₂ crystal,
- (b) IR and VCD spectra calculated for cluster (a),
- (c) 2 units of $\{Zn_3(PO_4)_2\}$ from α -Zn₃(PO₄)₂ crystal,
- (d) IR and VCD spectra for cluster (c),
- (e) 4 units of $\{Zn_3(PO_4)_2\}$ from α -Zn₃(PO₄)₂ crystal (type I),
- (f) IR and VCD spectra for cluster (f),
- (g) 4 units of $\{Zn_3(PO_4)_2\}$ from α -Zn₃(PO₄)₂ crystal (type II),
- (h) IR and VCD spectra for cluster (g),
- (i) 4 units of $\{Zn_3(PO_4)_2\}$ from α -Zn₃(PO₄)₂ crystal (type III),
- (j) IR and VCD spectra for cluster (i),
- (k) 4 units of $\{Zn_3(PO_4)_2\}$ from α -Zn₃(PO₄)₂ crystal (type IV),
- (l) IR and VCD spectra for cluster (k).
- (m) 4 units of $\{Zn_3(PO_4)_2\}$ from α -Zn₃(PO₄)₂ crystal (type V). The cluster was predicted to be VCD-inactive by calculation.

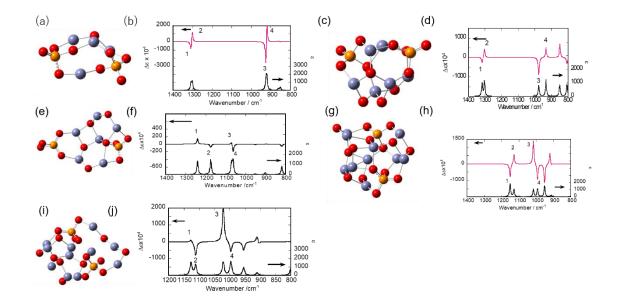


Figure S9. IR and VCD spectra calculated for the model clusters constructed from the combination of $a-Zn_3(PO_4)_2$ and ZnO at various ratios. Red and black spectra are correspondent to the ones experimentally observed for the products calcinated from *S*-BNDHP⁻/LZH and *R*- BNDHP⁻/LZH, respectively. The clusters were constructed according to the following combination:

- (a) 1:1 of $Zn_3(PO_4)_2$ and ZnO,
- (b) IR and VCD spectra calculated for cluster (a),
- (c) 1:3:1 of Zn₃(PO₄)₂, ZnO and O (spherical type),
- (d) IR and VCD spectra calculated for cluster (c),
- (e) 1:3:1 of Zn₃(PO₄)₂, ZnO and O (planar type),
- (f) IR and VCD spectra calculated for cluster (e),
- (g) 1:7 of $Zn_3(PO_4)_2$ and ZnO,
- (h) IR and VCD spectra calculated for cluster (g),
- (i) $1:8 \text{ of } Zn_3(PO_4)_2 \text{ and } ZnO$,
- (j) IR and VCD spectra calculated for cluster (i).

10. VCD and IR spectra calculated for the dimer model of zinc(II) orthophosphate cluster

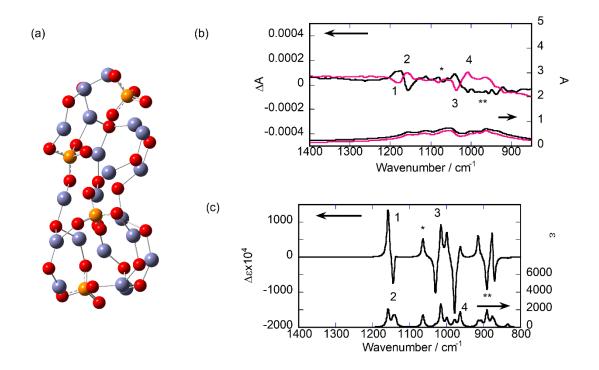


Figure S10. VCD and IR spectra calculated for a dimeric zinc(II) orthophosphate cluster. The optimized structure of a cluster is composed of two units of $\{Zn_3(PO_4)_2(ZnO)_7\}$. (a) The experimentally observed IR and VCD spectra of the calcinated samples, when the starting compounds were *R*-BNDP⁻/LZH (red) and *R*-BNDP⁻/LZH (black), respectively. (b) The calculated IR (lower) and VCD (lower) spectra for the dimeric model shown in (a). Two couplets (numbered as 1, 2 and 3, 4) and small peaks around 1100 cm⁻¹ were reproduced as experimentally observed by the black curve in (b).