Regulation of the coordination number of Zn single atoms to boost electrochemical sensing of H_2O_2

Ziyin Yang*, Yaqi Kong, Chengcheng Qi* School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.

E-mail address: 1271627739@qq.com

Table S1 Zn elemental analysis results for Zn-N₃/NC and Zn-N₄/NC by AAS

Samples	Elemental	AAS
Zn-N ₃ /NC	Zn	0.76 wt%
Zn-N ₄ /NC	Zn	2.58 wt%

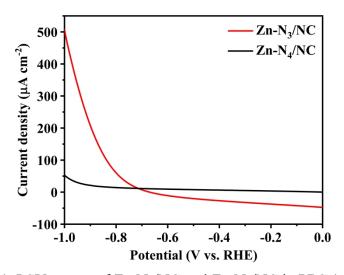


Figure S1. LSV curves of Zn-N₄/NC and Zn-N₃/NC in PBS (pH = 7.2)

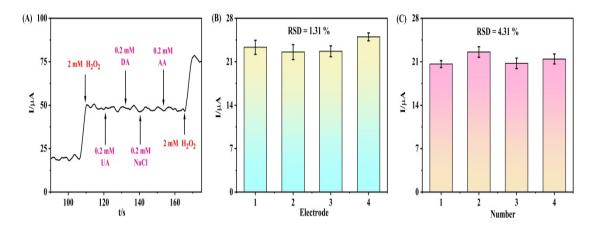


Figure S2 (A) Current response of Zn-N₃/NC/GCE to H_2O_2 and interference in a PBS solution (pH = 7.2) at -0.2 V; (B) current response of four independent Zn-N₃/NC/GCEs to 2 mM H_2O_2 in a PBS solution (pH = 7.2) at -0.2 V; (C) current response of the same Zn-N₃/NC/GCE to 2 mM H_2O_2 in a PBS solution (pH = 7.2) at -0.2 V