Supplementary Materials for "Tunable Magnetic and Electronic Properties of CrS₂/VS₂ Lateral Superlattices"

Huimin Gao,¹ Yimei Fang,² Yinghui Zhou,^{1,*} Feng Zheng,² Tie-Yu Lü,¹ Xinrui

Cao,^{1,3} Zi-zhong Zhu,^{1,3} and Shunqing Wu^{1,*}

¹Department of Physics, OSED, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), Xiamen University, Xiamen 361005, China ²School of Science, Jimei University, Xiamen 361021, China ³Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China

Content

Figure S1. The energy differences between the ferromagnetic and antiferromagnetic states of monolayers (a) 1T-CrS₂ and (b) 2H-VS₂ for different effective U values.

Figure S2. Band structures and density of states of monolayer CrS₂ and VS₂.

Figure S3. The formation energy of the lateral superlattice $CrS_2(m)/VS_2(n)$ (*m*+*n*=14) as a function of the width (*m*) of the CrS₂ sublattice.

Figure S4. The energy profiles of various magnetic configurations evolve as a function of the number of units for m+n=13.

Figure S5. Top view of monolayers (a) 1T-CrS₂ and (b) 2H-VS₂. The orange and green arrows correspond to lattice constants *a* and *b*. The red arcs represent the Cr-S-Cr (V-S-V) angles θ_1 and θ_2 , respectively.

Figure S6. Schematic diagrams illustrating three magnetic orders used for the calculation of exchange parameters: (a) FM, (b) FM&AFM, (c) AFM1 and (d) AFM2. Figure S7. Projected density of states of the central unit cells of CrS_2 and VS_2 in the $CrS_2(7)/VS_2(7)$ superlattice.

Figure S8. The charge transfer at the interface from the CrS_2 ribbon to the VS₂ ribbon as a function of the number of units for *m*=*n*.

Figure S9. Projected density of states of the central unit cells of CrS_2 and VS_2 in the $CrS_2(1)/VS_2(13)$ and $CrS_2(13)/VS_2(1)$ superlattices.

^{*} Email: <u>wsq@xmu.edu.cn</u> (S.Q.W.); <u>yhzhou@xmu.edu.cn</u> (Y.H.Z.)

Table S1. Structural parameters of the FM and sAFM states for monolayers 1T-CrS $_2$ and 2H-VS $_2$.

Figure S1. The energy differences between the ferromagnetic and antiferromagnetic states of monolayers (a) 1T-CrS₂ and (b) 2H-VS₂ for different effective U values.

Figure S2. Band structures and density of states of monolayer (a) CrS₂ and (b)VS₂.

Figure S3. The formation energy of the lateral superlattice $CrS_2(m)/VS_2(n)$ (*m*+*n*=14) as a function of the width (*m*) of the CrS2 sublattice.

Figure S4. The energy profiles of various magnetic configurations evolve as a function of the number of units for m+n=13.

Figure S5. Top view of monolayers (a) 1T-CrS₂ and (b) 2H-VS₂. The orange and green arrows correspond to lattice constants *a* and *b*. The red arcs represent the Cr-S-Cr (V-S-V) angles θ_1 and θ_2 , respectively.

Figure S6. Schematic diagrams illustrating three magnetic orders used for the calculation of exchange parameters: (a) FM, (b) FM&AFM, (c) AFM1 and (d) AFM2.

Spin-exchange coupling parameters (see Fig. 4(a)) were extracted by calculating the total energy differences of eight magnetic configurations (see Fig. S4(a)-(d)) based on the Heisenberg model. The energy contributed by magnetic interaction in these magnetic orders in a unit cell is expressed as

$$\begin{split} E_{1} &= -2 \times (m-1) \times S_{Cr}^{2} \times 3J_{1} - 2 \times (n-1) \times S_{V}^{2} \times 3J_{2} - 2 \times S_{Cr}S_{V} \times 3J_{3} + H_{0} \\ E_{2} &= 2 \times (m-1) \times S_{Cr}^{2} \times J_{1} - 2 \times (n-1) \times S_{V}^{2} \times 3J_{2} + 2 \times S_{Cr}S_{V} \times 3J_{3} + H_{0} \\ E_{3} &= 2 \times (m-1) \times S_{Cr}^{2} \times J_{1} + 2 \times (n-1) \times S_{V}^{2} \times J_{2} + 2 \times S_{Cr}S_{V} \times 3J_{3} + H_{0} \\ E_{4} &= 2 \times (m-1) \times S_{Cr}^{2} \times J_{1} + 2 \times (n-1) \times S_{V}^{2} \times J_{2} - 2 \times S_{Cr}S_{V} \times 3J_{3} + H_{0} \\ \end{split}$$

Figure S7. Projected density of states of the central unit cells of CrS_2 and VS_2 in the $CrS_2(7)/VS_2(7)$ superlattice.

Figure S8. The charge transfer at the interface from the CrS_2 ribbon to the VS_2 ribbon as a function of the number of units for m=n.

Figure S9. Projected density of states of the central unit cells of CrS_2 and VS_2 in the (a) $CrS_2(1)/VS_2(13)$ and (b) $CrS_2(13)/VS_2(1)$ superlattices.

Table S1. Structural parameters of the FM and sAFM states for monolayers 1T-CrS₂ and 2H-VS₂.

	<i>a</i> (Å)	<i>b</i> (Å)	$ heta_1$ (°)	$ heta_2$ (°)
CrS ₂ -sAFM	3.34	5.51	88.58	84.85
CrS ₂ -FM	3.33	5.76	88.61	88.21
VS ₂ -sAFM	3.22	5.64	86.42	86.20
VS ₂ -FM	3.22	5.57	87.66	87.62