Decoupled electron-phonon transport in Ag₂Se thermoelectric materials through constructing TiO₂/MoS₂ co-decorated cell-membrane-mimic grain boundaries

Hanwen Hu^a, Yiyan Liao^b, Shanshan Tan^b, Chen Li^a, Jun Tang^c, Kun Zheng^{a,*}, Lei Yang^{b,*}

^aBeijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China.

^bSchool of Materials Science & Engineering, Sichuan University, Chengdu, 610064, China.

^cKey Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.

* Corresponding authors

*E-mail: lyang1986@scu.edu.cn (L. Yang); kunzheng@bjut.edu.cn (K. Zheng).

Fig. S1. (a-b) The results of the finite-element analysis of the Ag₂Se based module detail the output power (*P*) and conversion efficiency (Φ) of the Ag₂Se based module as a function of current (*I*) with a fixed cold side temperature (T_c) and varied hot side temperature (T_h).

Fig. S2.

Fig. S2. High resolution XPS spectra of the AS-T-0.5 MoS₂ powder sample, inset is the Ti 2p spectrum.

Fig. S3.

Fig. S3. (a) As-synthesized Ag_2Se to the as-decorated bulk samples. (b) The cross-section SEM of Ag_2Se bulk samples.

Fig. S4.

Fig. S4. Zeta potential of MoS_2 and Ag_2Se dispersion at different pH.

Fig. S5. (a) STEM-HAADF image of the TiO_2/MoS_2 co-doped Ag₂Se nanocomposites (b-c) EELS spectra of the element of Mo and S collected from a MoS_2 area (red cross).

Fig. S6.

Fig. S6. The variation of S with n_H carrier concentration for of AS-T-*x* M (where x = 0, 0.05, 0.15, 0.3, and 0.5 in wt%) compared to the Pisarenko line, which is caused by the change in the increased effective density of states mass (m^*).

Fig. S7. Temperature-dependent (a) power factor (*PF*), (b) lorentz number (*L*), (c) electrons thermal conductivity (κ_e) and (d) the Vickers hardness (*Hv*) of AS-T-*x* M (where x = 0, 0.05, 0.15, 0.3, and 0.5 in wt%).

Fig. S8.

Fig. S8. (a)Low magnification SEM image of AS-T-0.5M sample. (b) Corresponding elemental distribution of Se, Ag, O, Ti, S, and Mo.

Table.S1									
PH	1	2	5	7	8	9	10	11	12
Zeta	-12.033	-	-	-	-	-	-	-	-26.9
Potential		32.566	32.666	32.566	31.833	31.333	32.466	32.333	
(mV)									
Error	-3.0666	-	-	-	2.5333	-	-	-	0.5
range		3.4333	1.5333	1.1333		0.7666	0.5666	2.3666	

Table.S2

Sample	Actual density	Relative density (%)
Ag ₂ Se	8.137	98.15
AS-T-0.05 M	8.020	96.74
AS-T-0.15 M	8.026	96.82
AS-T-0.3 M	8.007	96.59
AS-T-0.5 M	8.110	97.83