ELECTRONIC SUPPLEMENTARY INFORMATION

Percolative phase transition in few-layered MoSe₂ Field-effect transistors using Co and Cr contacts

Roshan Padhan,¹ Carlos Garcia,² Ralu Divan,³ Anirudha V. Sumant,³ Daniel Rosenmann,³ Sujit A. Kadam,¹ Akshay Wali^{1,3}, Suzanne Miller,³ Stephen A. McGill,^{2*} Nihar R Pradhan^{1*}

¹Layered Materials and Device Physics Laboratory, Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.

²National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA.
³Center for Nanoscale Materials, Argonne National Laboratory, 9700 S-Cass Avenue, Lemont, IL-60439, USA

*Email: <u>nihar.r.pradhan@jsums.edu</u> , <u>mcgill@magnet.fsu.edu</u>

Figure S1: AFM Topography and Height profile for Cr-contact and Co-contact MoSe₂ FET devices

Fig. S1 AFM mapping and height profile: (a) & (b) Height distribution on Cr/Au contact and Co/Au contact MoSe₂ device (Scale bar: 5 μ m), (c) & (d) Height profile at the lined spot at the corresponding images.

Figure S2: 4-Terminal transport measurements and Contact Resistance

Fig. S2 Basic FET Characterizations with 4-terminal system: (a) & (b) Room-temperature Transfer Characteristics of $MoSe_2$ FET (I_{ds} vs V_{bg}) at different source-drain voltages (V_{ds}) for Cr/Au and Co/Au contact, (c) & (d) comparing 2- terminal measurement and 4- terminal measurement in the drain current (I_{ds}) variation with back gate (V_{bg}) voltage at fixed sourcedrain voltage (V_{ds} = 0.02V) for both type of devices, (e) & (f) Contact resistance extracted from the difference between 2-terminal and 4-terminal measurement as a function of back gate voltage (V_{bg}) for both contacts.

Device Type	L (µm)	l (µm)	W (µm)	μ_{2T} (cm ² /Vs)	μ_{2T} (cm ² /Vs)
Cr-MoSe ₂	10.2	5.6	8.1	6.5	15.2
Co-MoSe ₂	12.9	5.7	13.6	16	45.5

The details 2-terminal and 4-terminal mobility of the above devices are tabulated below

Figure S3: Temperature Scaling to the Conductivity Data

Fig. S3 Temperature scaling with temperature parameter T_0 for Co-contact: (a and b) represents the normalized conductivities data at various applied gate voltages. The conductivity data were normalized with the critical conductivity value σ_c showing the metallic branch separated from the insulating branch. (c) shows the scaling of conductivity data with temperature parameter T_0 to test whether the conductivities data collapse together according to quantum critical behavior but the data are not near the scaling [Reference 1,2,3] suggested no quantum critical behavior near T=0K.

Figure S4: Percolation fitting for Cr-contact at different temperature

Fig. S4 Percolation Fittings for Cr-contact: (a-i) represents the percolation fitting on the Back gate variation of conductivity at different temperatures varying from 60K to 263K. (Extracted critical voltage (V_c) and critical exponent(δ) for respective temperatures is mentioned)

Figure S5: Percolation fitting for Co-contact at different temperature

Fig. S5 Percolation Fittings for Co-contact: (a-k) represents the percolation fitting on the Back gate variation of conductivity at different temperatures varying from 1.7K to 200K. (Extracted critical voltage (V_c) and critical exponent (δ) for respective temperatures is mentioned)

References

- N.R. Pradhan, C. Garcia, B. Chakrabarti, D. Rosenmann, R. Divan, A. V. Sumant, S. Miller, D. Hilton, D. Karaiskaj, and S.A. McGill, "Insulator-to-metal phase transition in a few-layered MoSe₂ field effect transistor," Nanoscale 15(6), 2667–2673 (2023).
- 32 N. R. Pradhan, A. McCreary, D. Rhodes, Z. Lu, S. Feng, E. Manousakis, D. Smirnov, R. Namburu, M. Dubey, A. R. Hight Walker, H. Terrones, M. Terrones, V. Dobrosavljevic, and L. Balicas, "Metal to Insulator Quantum-Phase Transition in Few-Layered ReS₂," Nano Lett 15(12), 8377–8384 (2015).
- Lily J. Stanley, Hsun-Jen Chuang, Zhixian Zhou, Michael R. Koehler, Jiaqiang Yan, David G. Mandrus, Dragana Popović, "Low-Temperature 2D/2D Ohmic Contacts in WSe₂ Field-Effect Transistors as a Platform for the 2D Metal–Insulator Transition"ACS Appl. Mater. Interfaces 2021, 13, 8, 10594–10602