Supporting Information

High-performance hybrid supercapacitors enabled by CoTe@CoFeTe double-shelled nanocubes

Helya Gholami Shamami,¹ Akbar Mohammadi Zardkhoshoui^{2*} and Saied Saeed Hosseiny Davarani^{1*}

¹Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.

²Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran 3313193685, Iran.

Corresponding authors: *¹Tel: +98 21 22431661; Fax: +98 21 22431661; E-mail: <u>ss-hosseiny@sbu.ac.ir</u> (S.S.H. Davarani) and *²Tel: +98 21 56276283; Fax: +98 21 56276265; E-mail: A_mohammadi@irost.ir (A. Mohammadi Zardkhoshoui).

Fig. S1 (a, b) FESEM images of the ZIF67. (c, d) TEM images of the ZIF67.

Fig. S2 EDX spectrum of the ZIF67.

Fig. S3 FE-SEM mapping images of the ZIF67.

Fig. S4 EDX spectrum of the ZIF67@CoFe-PBA.

Fig. S5 FE-SEM mapping images of the ZIF67@CoFe-PBA.

Fig. S6 EDX spectrum of the Co_3O_4 (a) $CoFe_2O_4$.

Fig. S7 FE-SEM mapping images of the Co₃O₄@CoFe₂O₄.

Fig. S8 EDX spectrum of the CoTe@CoFeTe.

Fig. S9 FESEM mapping images of the CoTe@CoFeTe.

Fig. S10 (a) XRD pattern of the ZIF67. (b) XRD pattern of the ZIF67@CoFe-PBA. (c) XRD pattern of the Co₃O₄@CoFe₂O₄.

Fig. S11 (a) CV curves of the ZIF67 from 10 to 50 mV s⁻¹. (b) CV curves of the ZIF67@CoFe-PBA from 10 to 50 mV s⁻¹. (c) CV curves of the Co_3O_4 @CoFe₂O₄ from 10 to 50 mV s⁻¹.

Fig. S12 (a) GCD curves of the ZIF67 from 1 to 54 A g^{-1} . (b) GCD curves of the ZIF67@CoFe-PBA from 1 to 54 A g^{-1} . (c) GCD curves of the Co₃O₄@CoFe₂O₄ from 1 to 54 A g^{-1} .

Fig. S13 Longevity of the ZIF67, ZIF67@CoFe-PBA, and Co₃O₄@CoFe₂O₄ electrodes at 9 A g⁻¹.

Fig. S14 EIS curves of the CoTe@CoFeTe before and after 10000 cycles.

Fig. S15 (a) FE-SEM image of the CoTe@CoFeTe after 10000 cycles. (b) TEM image of the CoTe@CoFeTe after 10000 cycles

Fig. S16 FESEM mapping images of the CoTe@CoFeTe after 10000 cycles.

Fig. S17 (a) CV plots of the AC from 10 to 50 mV s⁻¹. (b) GCD plots of the AC from 1 to 54 A g⁻¹. (c) Rate capability of the AC electrode.

Fig S. 18 CV plots of AC (anode electrode) and CoTe@CoFeTe (cathode electrode) at 50 mV s⁻¹in threeelectrode cell.

Fig. S19 CV plots of the AC//CoTe@CoFeTe at various potential window at 10 mV s⁻¹ from 1.0 to 2.0 V.

Composition	Capacity (C/g)	Cycles, retention	Rate capability	ED (Wh kg ⁻¹)	Reference
Ni _{0.33} Co _{0.67} Te	472.3 at 1 A g ⁻¹	5000, 92%	60.4% at 20 A g ⁻¹	54	1
СоТе	354 at 1 A g ⁻¹	5000, 76.9%	90.2% at 20 A g ⁻¹	32.9	2
NiCoSe/G	421.3 at 1 A g ⁻¹	5000, 84.6%	53% at 30 A g ⁻¹	40.4	3
rGO-CCSe	724 at 1 A g ⁻¹	6000, 91.5%	71% at 60 A g ⁻¹	57.8	4
CuSe@MnSe	635.32 at 1 A g ⁻¹	7000, 91.62%	60.3% at 30 A g ⁻¹	19.4	5
Ni ₃ Se ₂	440.55 at 1 A g ⁻¹	10000, 80.2%	53.3% at 20 A g ⁻¹	38.4	6
(Ni _{0.85} Se) ₃ (Co _{0.85} Se)/ rGO	1004.5 at 1 A g ⁻¹	5000, 79.7%	78.8% at 20 A g ⁻¹	38	7
Ni _{0.85} Se@MoSe ₂	387 at 1 A g ⁻¹	1000, 95%	63% at 15 A g ⁻¹	25.5	8
CoTe@CoFeTe	1312 at 1 A g ⁻¹	10000, 92.35 (3 E)	80% at 54 A g ⁻¹	64.66	This study

Table S1. Comparison of the performance of the CoTe@CoFeTe with other previously reported electrode

materials.

References

- 1 S. Zhang, D. Yang, M. Zhang, Y. Liu, T. Xu, J. Yang and Z.-Z. Yu, Inorg. Chem. Front. 2020,
- 7, 477–486.
- 2 M. Xiao, Y. Su, M. Zhao and B. Du, Nanotechnology, 2020, 31, 55706.
- 3 Y. Wang, F. Mo and X. Wu, J. Electroanal. Chem. 2020, 924, 116863.

4 S. E. Moosavifard, A. Mohammadi, M. Ebrahimnejad Darzi, A. Kariman, M. M. Abdi and G. Karimi, *Chem. Eng. J.*, 2021, **415**, 128662.

5 G. Tang, X. Zhang, B. Tian, P. Guo, J. Liang and W. Wu, Chem. Eng. J., 2023, 471, 144590.

- 6 Y. Liu, Q. Xu, R. Wang, Y. Zheng, L. Zhu, Z. Wang and W. Zheng, *J. Mater. Chem. A* 2020, **8**, 797–809.
- 7 T. Zhou, S. Tang, H. Yu, L. Shen, Q. Huang, S. Yang, L. Yu and L. Zhang, *New J. Chem.* 2022,
 46, 10328–10338.

8 H. Peng, C. Wei, K. Wang, T. Meng, G. Ma, Z. Le and X. Gong, *ACS Appl. Mater. Interfaces* 2017, **9**, 17067–17075.