Supplementary Information

Manipulation of Trions to Enhance the Excitonic Emission in Monolayer p-MoS₂ and its Hetero-bilayer by Reverse Charge Injection

Rashed H. Lone^{1,2^{+*}}, Shreya Gaonkar¹⁺, B. Manoj Kumar¹, and E. S. Kannan¹,

¹Department of Physics, BITS-Pilani K. K. Birla Goa Campus, Zuarinagar, Goa-403726, India.

²Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT

University, Melbourne, Victoria 3000, Australia

*rashedlone55@gmail.com

⁺these authors contributed equally to this work

Figure S1. Optical images of n-MoSe₂ and n-MoS₂, before and after photo-exfoliation on various substrates.

eZAF Smart Quant Results

Element	Weight %	Atomic %	Net Int.	Error %	Kratio	Z	А	F
ОК	45.4	69.6	149.2	10.8	0.1081	1.1111	0.2142	1.0000
SiK	26.4	23.0	372.9	4.5	0.2072	1.0174	0.7686	1.0048
NbL	26.7	7.0	135.1	5.7	0.1814	0.7880	0.8638	0.9995
MoL	1.5	0.4	7.4	42.9	0.0100	0.7795	0.8472	0.9992
SK	0.0	0.0	0.0	100.0	0.0000	0.9981	0.7233	1.0015

Figure S2. Presence of Niobium in p-type MoS₂ is confirmed by Electron Dispersive Spectrum (EDS).

Figure S3. Optical image of n-MoSe₂ on FLG substrate (a) before and (b) after photoexfoliation. (c) Raman spectra of n-MoSe₂ on FLG, before (solid blue line) and after (solid red line) photo-exfoliation. (d) Height profile and (e) AFM image of monolayer n-MoSe₂.

Figure S4: Raman spectra on SiO₂/Si substrate of (a) p-MoS₂ and (b) n-MoS₂. Temperature dependent PL spectra on SiO₂/Si substrate of (c) p-MoS₂ and (d) n-MoS₂.

Figure S5. PL spectra of glass (solid black), gold (solid red), FLG (solid blue) and ITO (solid violet), depicting a same broad range of PL spectra in case of ITO and glass thus confirming that it originates from glass substrate at (a) RT and (b) LNT.

Figure S6: Temperature dependent PL spectra of n-MoSe₂ on (a) ITO, (b) Au and (c) FLG.