Supplementary Information

Ultralight Flexible 3D Nickel Micromesh Decorated with NiCoP for High Stability Alkaline Zinc Batteries

Zana Karim Abdul^{1,3}, Zeqi Nie¹, Yapeng Zhang¹, XiuXue Liu¹, XiaohuWang¹, Niwamanya *Gilbert¹ , Donghai Wei1,2*, Wen Zhang⁴*, Guanhua Zhang1,3*

¹ State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China

² Hunan University of Technology, Zhuzhou 412008, China

³ Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China

⁴ Department of Chemical and Materials Engineering, the University of Auckland, Auckland CBD, Auckland 1142, New Zealand

E-mail: weidonghai000@126.com; zhang.wen@auckland.ac.nz

Table of Contents

Chemical Reagents

Nickel sulfate hexahydrate (NiSO₄ • 6H₂O, AR, Aladdin), nickel chloride hexahydrate (NiCl² **•**  6H2O, ≥ 98.0%, Aladdin), ammonium chloride (NH4Cl, 99.5%, Aladdin), CoSO⁴ **•** 7H2O (≥ 99.0%, Aladdin), NaH2PO⁴ **•** H2O (AR, Aladdin), C6H5Na3O⁷ **•** 2H2O (AR, Aladdin), sodium hydroxide (NaOH, AR, Aladdin), potassium hydroxide (KOH, ≥ 85%, Aladdin), lithium hydroxide monohydrate (LiOH • H₂O, 98%, Aladdin), boric acid (H₃BO₃, ≥ 99.5%, Aladdin), sulfuric acid $(H₂SO₄, ACS reagent, 95.0-98.0 %), all the chemicals were of analytical grade and used without$ further purification.

Indium tin oxide (ITO) was purchased from South China Xiang Cheng Technology Co., Ltd. The photoresist (PR, RZJ-390PG-50CP) was obtained from Suzhou Rui Hong Electronic Chemical Co., Ltd. Deionized water used in all experiments was prepared using a Hitech-K flow water purification system (Hitech Instrument Co., Ltd., Shanghai, China).

Experimental methods

Fabrication of 3D Ni Mesh (NM)

A layer of photoresist was first spin-coated onto the indium tin oxide (ITO) substrate at sequential spin speeds of 500 rpm for 10 s and 800 rpm for 30 s. The ITO substrates were then dried at 100°C for 3 minutes. Using a 3D honeycomb-patterned mask plate (7.5 μ m, 100 × 100 mm) and exposed to a specific UV wavelength, the photoresist underwent a photochemical reaction, resulting in areas with different solubility. Unexposed photoresist was removing using 0.5% NaOH, yielding precise lithographic patterns. To create an ordered cellular array network, micro-gullies were filled by selective electrodeposition of Ni foam at 2 V and 30 mA cm-2 for 2400 s. The bath solution composed 7.85 mg $Niso_4 \cdot 6H_2O$ and 1.3 mg NH_4Cl . The Ni micromesh (NM) was then peeled off from the ITO by immersing in an etching solution containing 5% NaOH for 1 minute. The resulting 3D Ni mesh had a thickness of approximately 0.004 mm, as shown in Figure S1a.

Preparation of 3D NM@NiCoP electrode

In the secondary electrodeposition process, a self-supporting 3D NM $(1 \times 1 \text{ cm}^2)$ was immersed in a solution containing 20 mg NiCl₂⁺ 6H₂O, 4 mg NH₄Cl and 10 mg H₃BO₃ in 100 ml of deionized water (DI). The bath temperature was maintained at 60 °C, and a current density of 10 mA cm⁻² was applied for 600 seconds. NiCoP was electrodeposited onto the 3D Ni mesh to obtain 3D NM@NiCoP. The electrochemical deposition was performed in a standard three-electrode cell (CH1660E), with the 3D Ni mesh as the working electrode, platinum as the counter electrode, and Hg/HgO as the reference electrode. Cycling voltammetry (CV) was conducted with the potential range from -0.3V to -1.2 V at a scan rate of 2 mV s⁻¹ for 60 cycles. The solution comprised 0.3 mg $NiSO_4 \cdot 6H_2O$, 0.3514 mg $CoSO_4 \cdot 7H_2O$, 2.6 mg NaH₂PO₄ \cdot H₂O and 1.47 mg C₆H₅Na₃O₇ \cdot 2H₂O in 50 ml ID water.

Preparation of Zn@Al2O3@TiO² anode

Zinc foil $(Zn, 99.9\%, 5 \times 5 \text{cm})$ was ultrasonically cleaned in ethanol and DI water to remove surface impurities and then dried at 60°C in vacuum oven for 45 minutes. Using the NCE-200 R atomic layer deposition system, a 10 nm layer of Al_2O_3 was coated onto the prepared Zn plate at 130°C, followed by the deposition of a 20 nm layer of TiO₂ at 120°C on the $\text{Zn}(a)$ Al₂O₃.

Material characterization and Electrochemical Measurements

Microstructure analysis of the samples was conducted using field-emission scanning electron microscopy (SEM) (Carl Zeiss SIGMA HD) and optical microscopy (Carl-Zeiss AXIO-10). Raman spectra were obtained using a confocal microscopy system with a 532 nm laser wavelength (WITec Alpha-300 R) at room temperature. X-ray diffraction (XRD) patterns were acquired using an Siemens D-5000 diffractometer. Electrochemical depositions were carried out using an electrochemical workstation (CHI660e) and a source meter. All electrochemical measurements, including cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS), were conducted in a 2 M KOH solution at room temperature using the same electrochemical workstation. In these experiments, the synthesized samples served as the working electrode, while a Pt sheet, and a mercuric oxide electrode (HgO) were used as the counter electrode and the reference electrode, respectively. The charge storage properties of the asymmetric device, constructed with the $Zn@A L_2O_3@TiO_2$ anode and the 3D NM@NiCoP cathode, were evaluated under a two-electrode mode using the electrochemical station. The areal capacity was calculated according to the following equation:

$$
C_a = I \times \Delta t \div (S \times 3.6) \tag{1}
$$

Where C_a (μ Ah cm⁻²) represents the areal capacitance, I (μ A) is the charge/discharge current, Δt (s) is the discharge time, and *S* is the loading area of the active material (1 × 1 cm² in this work).

Figure S1. Thickness measurements of a) 3D NM: 0.004 mm and b) zinc foil: 0.1 mm.

Figure S2. Digital photograph of Ni mesh showing a) lightness and flexibility of the Ni mesh, and b) transparency of the Ni mesh.

Figure S3. SEM image and the corresponding elemental mapping images of the 3D NM@NiCoP.

Figure S4. The sheet resistance of a) NM electrode and b) 3D NM electrode.

Figure S5. a) XRD patterns of Ni, 3D NM and 3D NM@NiCoP, b) Raman spectrum of 3D NM@NiCoP.

Figure S6. a) Rate performance of 3D NM@NiCoP, b) comparison of the rate capabilities in this work with reported NiCoP values (transformed from literature data).2, 3, 5, 6, ¹¹

Figure S7. Schematic illustration of the fabrication process for Zn@TiO₂. a) zinc foil, b) zinc foil after coating with a 20 nm $\rm TiO_2$ layer.

Figure S8. Digital photograph of the zinc plate before (left) and after (right) coating with 20 nm TiO₂ via ALD.

Figure S9. Digital photographs showing the surface of Zn@TiO₂ anodes after immersion in KOH: a-c) cleaned Zn foil coated with TiO₂, with the surface remaining intact and stable after more than 28 hours in KOH, b-d) Non-cleaned Zinc foil coated with $TiO₂$, where the ALD layer is compromised after more than 28 hours in KOH.

Figure S10. Electrochemical performance of Zn@TiO₂//3D NM@NiCoP in 2 M KOH: a) Cyclic voltammetry (CV) curves, b) galvanostatic charge-discharge (GCD) curves, c) Nyquist impedance spectra (EIS), d) plot of maximum capacity at a current density of 3 mA cm^{-2} .

Figure S11. Two-electrode corrosion test for Zn@TiO_2 //3D NM@NiCoP: a) anode and cathode appearances, b) anode and cathode in 2M KOH, c) Zn@TiO_2 in 2 M KOH showing significant hydrogen evolution, d) Zn@TiO_2 varnished in the solution and e) corrosion of Zn@TiO_2 .

Figure S12. Schematic illustration of the fabrication process for 3D Zn@Al₂O₃@TiO₂ with different coatings architectures: a) zinc foil, b) coated with 10 nm Al₂O₃ c) $Zn@Al_2O_3$ after additional 20 nm $TiO₂$ coating.

Figure S13. Comparative I-V tests for Zn foil, Zn@ TiO₂ and Zn@Al₂O₃@TiO₂.

Figure S14. Contact angles of a) bare Zn b) $Zn@TiO₂$ and c) $Zn@AI₂O₃@TiO₂$ with water droplets.

Figure S15. Surface XRD patterns of Zn foil, Zn@TiO_2 and $\text{Zn@Al}_2\text{O}_3@ \text{TiO}_2$ electrodes.

Figure S16. a) Comparison of the areal capacity of the $Zn@A1_2O_3@TiO_2$ //3D NM@NiCoP with results from other studies at various current densities, b) comparison of cycling stability between devices with Zn@TiO_2 and $\text{Zn@AL}_2\text{O}_3@Ti\text{O}_2$ anodes at same current density of 3 mA cm⁻² in a two-electrode system.

Table S1 Performance comparison of relevant works in a three-electrode system.

Anode	Cathode	Electrolyte s	Capacity	Current Density	Ref
$Zn@Al_2O_3@TiO$ \overline{c}	3D NM@NiCoP	2 M KOH	5.42 μ Ah cm ⁻²	3 mA cm^{-2}	This work
RGO HSC	NiCo-P/Pox	6 M KOH	67.4 μ Ah cm ⁻²	2 mA cm^{-2}	14
Zn	NiCO ₂ O ₄	1 M KOH	57.3 μ Ah cm ⁻²	0.5 mA cm^{-2}	15
GOP	Ni-Co-N/GP	PVA-KOH	18.8 μ Ah cm ⁻²	0.5 mA cm^{-2}	5
rGO/CNT	NiCoBH	PVA-KOH	29.18 µAh cm	0.5 mA cm^{-2}	$\overline{7}$
Cu@Ni@Ni:Co- S NFs	Cu@Ni@Ni:Co-S NFs	PVA-KOH	1.21 μ Ah cm ⁻²	0.025 mA cm ⁻²	11
C-pen ink	Ni-pen ink	1 M Na ₂ SO ₄	4.64 μ Ah cm ⁻²	1 mA cm^{-2}	16
PEDOT-S:PSS	PEDOT-S:PSS	$1 M H_3PO_4$	23.5 μ Ah cm ⁻²	1 mA cm^{-2}	17
siloxene nanosheets	Zn	WiS	3.11 μ Ah cm ⁻²	0.05 mA cm ⁻²	18
Ag NW/graphene	AgNW@NiCo/NiCo($OH)_2$	2 M KOH	3.2μ Ah cm ⁻²	0.2 mA cm^{-2}	19
MnO NP/TC/ITO NP/TC)50	MnO NP/TC/ITO NP/TC)50	PVA/LiCl	2.24 μ Ah cm ⁻²	0.05 mA cm ⁻²	20

Table S2. Performance comparison of energy storage devices in a 2-electrode system.

Table S3. Comparison of the cycling stability of Zn@Al₂O₃@TiO₂//3D NM@NiCoP from this work with other materials used in electrochemical energy storage devices in units of cm².

References

- 1. G. Zhang, J. Hu, Y. Nie, Y. Zhao, L. Wang, Y. Li, H. Liu, L. Tang, X. Zhang, D. Li, L. Sun and H. Duan, *Advanced Functional Materials*, 2021, **31**, 2100290.
- 2. T. Chen, Z. Shuang, J. Hu, Y. Zhao, D. Wei, J. Ye, G. Zhang and H. Duan, *Small*, 2022, **18**, 2201628.
- 3. G. Zhang, Y. Zhao, J. Hu, H. Liu, T. Chen, H. Yu and H. Duan, *Journal of Materials Chemistry A*, 2022, **10**, 22182-22193.
- 4. L. Huang, D. Chen, Y. Ding, S. Feng, Z. L. Wang and M. Liu, *Nano Letters*, 2013, **13**, 3135-3139.
- 5. F. Liu, L. Zeng, Y. Chen, R. Zhang, R. Yang, J. Pang, L. Ding, H. Liu and W. Zhou, *Nano Energy*, 2019, **61**, 18-26.
- 6. A. K. Singh and D. Sarkar, *Journal of Materials Chemistry A*, 2017, **5**, 21715-21725.
- 7. M. Liu, Z. Cong, X. Pu, W. Guo, T. Liu, M. Li, Y. Zhang, W. Hu and Z. L. Wang, *Advanced Functional Materials*, 2019, **29**, 1806298.
- 8. A. Nanwani, K. A. Deshmukh, P. Sivaraman, D. R. Peshwe, I. Sharma, S. J. Dhoble, H. C. Swart, A. D. Deshmukh and B. K. Gupta, *npj 2D Materials and Applications*, 2019, **3**, 45.
- 9. X. Liu, W. Zang, C. Guan, L. Zhang, Y. Qian, A. M. Elshahawy, D. Zhao, S. J. Pennycook and J. Wang, *ACS Energy Letters*, 2018, **3**, 2462-2469.
- 10. B. S. Soram, J. Y. Dai, I. S. Thangjam, N. H. Kim and J. H. Lee, *Journal of Materials Chemistry A*, 2020, **8**, 24040-24052.
- 11. B. S. Soram, I. S. Thangjam, J. Y. Dai, T. Kshetri, N. H. Kim and J. H. Lee, *Chemical Engineering Journal*, 2020, **395**, 125019.
- 12. Z. Lu, X. Wu, X. Lei, Y. Li and X. Sun, *Inorganic Chemistry Frontiers*, 2015, **2**, 184-187.
- 13. J. Liu, C. Guan, C. Zhou, Z. Fan, Q. Ke, G. Zhang, C. Liu and J. Wang, *Advanced Materials*, 2016, **28**, 8732-8739.
- 14. H. C. Chen, S. Jiang, B. Xu, C. Huang, Y. Hu, Y. Qin, M. He and H. Cao, *Journal of Materials Chemistry A*, 2019, **7**, 6241-6249.
- 15. H. Zhang, X. Zhang, H. Li, Y. Zhang, Y. Zeng, Y. Tong, P. Zhang and X. Lu, *Green Energy & Environment*, 2018, **3**, 56-62.
- 16. Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu and D. Zou, *Advanced Materials*, 2012, **24**, 5713-5718.
- 17. J. C. Zhuanpei Wanga, Qun Guana, Hui Huanga, Yinchuan Lia, Jingwen Zhoua, Wei Nia,Bin Wanga,Sisi Heb, Huisheng Pengb, *Nano Energy* 2018, **45**.
- 18. Z. Wang, J. Cheng, Q. Guan, H. Huang, Y. Li, J. Zhou, W. Ni, B. Wang, S. He and H. Peng, *Nano Energy*, 2018, **45**, 210-219.
- 19. J. Liu, G. Shen, S. Zhao, X. He, C. Zhang, T. Jiang, J. Jiang and B. Chen, *Journal of Materials Chemistry A*, 2019, **7**, 8184-8193.
- 20. J. Choi, D. Nam, D. Shin, Y. Song, C. H. Kwon, I. Cho, S. W. Lee and J. Cho, *ACS Nano*, 2019, **13**, 12719-12731.
- 21. G. Sun, H. Yang, G. Zhang, J. Gao, X. Jin, Y. Zhao, L. Jiang and L. Qu, *Energy & Environmental Science*, 2018, **11**, 3367-3374.
- 22. T. Xin, Y. Wang, N. Wang, Y. Zhao, H. Li, Z. Zhang and J. Liu, *Journal of Materials Chemistry A*, 2019, **7**, 23076-23083.
- 23. Z. Fan, J. Jin, C. Li, J. Cai, C. Wei, Y. Shao, G. Zou and J. Sun, *ACS Nano*, 2021, **15**, 3098-3107.
- 24. L. Li, W. Liu, K. Jiang, D. Chen, F. Qu and G. Shen, *Nano-Micro Letters*, 2021, **13**, 100.
- 25. H. He, H. Tong, X. Song, X. Song and J. Liu, *Journal of Materials Chemistry A*, 2020, **8**, 7836-7846.