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Chemical Reagents
Nickel sulfate hexahydrate (NiSO4  •  6H2O, AR, Aladdin), nickel chloride hexahydrate 

(NiCl2 •  6H2O, ≥ 98.0%, Aladdin), ammonium chloride (NH4Cl, 99.5%, Aladdin), CoSO4 • 7H2O 

(≥ 99.0%, Aladdin), NaH2PO4 • H2O (AR, Aladdin), C6H5Na3O7 • 2H2O (AR, Aladdin), sodium 

hydroxide (NaOH, AR, Aladdin), potassium hydroxide (KOH, ≥ 85%, Aladdin), lithium hydroxide 

monohydrate (LiOH • H2O, 98%, Aladdin), boric acid (H3BO3, ≥ 99.5%, Aladdin), sulfuric acid 

(H2SO4, ACS reagent, 95.0-98.0 %), all the chemicals were of analytical grade and used without 

further purification.

Indium tin oxide (ITO) was purchased from South China Xiang Cheng Technology Co., Ltd. 

The photoresist (PR, RZJ-390PG-50CP) was obtained from Suzhou Rui Hong Electronic 

Chemical Co., Ltd. Deionized water used in all experiments was prepared using a Hitech-K flow 

water purification system (Hitech Instrument Co., Ltd., Shanghai, China).
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Experimental methods
Fabrication of 3D Ni Mesh (NM)

A layer of photoresist was first spin-coated onto the indium tin oxide (ITO) substrate at 

sequential spin speeds of 500 rpm for 10 s and 800 rpm for 30 s. The ITO substrates were then 

dried at 100°C for 3 minutes. Using a 3D honeycomb-patterned mask plate (7.5 μm, 100 × 100 

mm) and exposed to a specific UV wavelength, the photoresist underwent a photochemical 

reaction, resulting in areas with different solubility. Unexposed photoresist was removing using 

0.5% NaOH, yielding precise lithographic patterns. To create an ordered cellular array network, 

micro-gullies were filled by selective electrodeposition of Ni foam at 2 V and 30 mA cm-2 for 2400 

s. The bath solution composed 7.85 mg NiSO4 • 6H2O and 1.3 mg NH4Cl. The Ni micromesh 

(NM) was then peeled off from the ITO by immersing in an etching solution containing 5% NaOH 

for 1 minute. The resulting 3D Ni mesh had a thickness of approximately 0.004 mm, as shown in 

Figure S1a.

Preparation of 3D NM@NiCoP electrode

In the secondary electrodeposition process, a self-supporting 3D NM (1×1cm2) was immersed 

in a solution containing 20 mg NiCl2·• 6H2O, 4 mg NH4Cl and 10 mg H3BO3 in 100 ml of 

deionized water (DI). The bath temperature was maintained at 60 °C, and a current density of 10 

mA cm-2 was applied for 600 seconds. NiCoP was electrodeposited onto the 3D Ni mesh to obtain 

3D NM@NiCoP. The electrochemical deposition was performed in a standard three-electrode cell 

(CH1660E), with the 3D Ni mesh as the working electrode, platinum as the counter electrode, and 

Hg/HgO as the reference electrode. Cycling voltammetry (CV) was conducted with the potential 

range from -0.3V to -1.2 V at a scan rate of 2 mV s-1 for 60 cycles. The solution comprised 0.3 mg 

NiSO4 • 6H2O, 0.3514 mg CoSO4 • 7H2O, 2.6 mg NaH2PO4 • H2O and 1.47 mg C6H5Na3O7 • 2H2O 

in 50 ml ID water.

Preparation of Zn@Al2O3@TiO2 anode

Zinc foil (Zn, 99.9%, 5×5cm) was ultrasonically cleaned in ethanol and DI water to remove 

surface impurities and then dried at 60°C in vacuum oven for 45 minutes. Using the NCE-200 R 

atomic layer deposition system, a 10 nm layer of Al2O3 was coated onto the prepared Zn plate at 

130°C, followed by the deposition of a 20 nm layer of TiO2 at 120°C on the Zn@Al2O3.

Material characterization and Electrochemical Measurements
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Microstructure analysis of the samples was conducted using field-emission scanning electron 

microscopy (SEM) (Carl Zeiss SIGMA HD) and optical microscopy (Carl-Zeiss AXIO-10). 

Raman spectra were obtained using a confocal microscopy system with a 532 nm laser wavelength 

(WITec Alpha-300 R) at room temperature. X-ray diffraction (XRD) patterns were acquired using 

an Siemens D-5000 diffractometer. Electrochemical depositions were carried out using an 

electrochemical workstation (CHI660e) and a source meter. All electrochemical measurements, 

including cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical 

impedance spectroscopy (EIS), were conducted in a 2 M KOH solution at room temperature using 

the same electrochemical workstation. In these experiments, the synthesized samples served as the 

working electrode, while a Pt sheet, and a mercuric oxide electrode (HgO) were used as the counter 

electrode and the reference electrode, respectively. The charge storage properties of the 

asymmetric device, constructed with the Zn@AL2O3@TiO2 anode and the 3D NM@NiCoP 

cathode, were evaluated under a two-electrode mode using the electrochemical station.

The areal capacity was calculated according to the following equation:

        (1)aC =I×Δt÷(S×3.6)

Where Ca (μAh cm-2) represents the areal capacitance, I (mA) is the charge/discharge current, 

Δt (s) is the discharge time, and S is the loading area of the active material (1 × 1 cm2  in this 

work).
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a b

Figure S1. Thickness measurements of a) 3D NM: 0.004 mm and b) zinc foil: 0.1 mm.
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a b

Figure S2. Digital photograph of Ni mesh showing a) lightness and flexibility of the Ni mesh, and 

b) transparency of the Ni mesh.
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Figure S3. SEM image and the corresponding elemental mapping images of the 3D NM@NiCoP.
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ba

Figure S4. The sheet resistance of a) NM electrode and b) 3D NM electrode.
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Figure S5. a) XRD patterns of Ni, 3D NM and 3D NM@NiCoP, b) Raman spectrum of 3D 

NM@NiCoP.
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Figure S7. Schematic illustration of the fabrication process for Zn@TiO2. a) zinc foil, b) zinc foil 

after coating with a 20 nm TiO2 layer.
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Figure S8. Digital photograph of the zinc plate before (left) and after (right) coating with 20 nm 

TiO2 via ALD.
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a b

c d

Figure S9. Digital photographs showing the surface of Zn@TiO2 anodes after immersion in KOH: 

a-c) cleaned Zn foil coated with TiO2, with the surface remaining intact and stable after more than 

28 hours in KOH, b-d) Non-cleaned Zinc foil coated with TiO2, where the ALD layer is 

compromised after more than 28 hours in KOH.
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Figure S10. Electrochemical performance of Zn@TiO2//3D NM@NiCoP in 2 M KOH: a) Cyclic 

voltammetry (CV) curves, b) galvanostatic charge-discharge (GCD) curves, c) Nyquist impedance 

spectra (EIS), d) plot of maximum capacity at a current density of 3 mA cm-2.
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Figure S11. Two-electrode corrosion test for Zn@TiO2//3D NM@NiCoP: a) anode and cathode 

appearances, b) anode and cathode in 2M KOH, c) Zn@TiO2 in 2 M KOH showing significant 

hydrogen evolution, d) Zn@TiO2 varnished in the solution and e) corrosion of Zn@TiO2.
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Figure S12. Schematic illustration of the fabrication process for 3D Zn@Al2O3@TiO2 with 

different coatings architectures: a) zinc foil, b) coated with 10 nm Al2O3 c) Zn@Al2O3 after 

additional 20 nm TiO2 coating.



19

Figure S13. Comparative I-V tests for Zn foil, Zn@ TiO2 and Zn@Al2O3@TiO2.
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a

Bare Zn Zn@Al2O3@TiO2

cb

Zn@TiO2

CA:88.46ᵒ CA:48.79ᵒ CA:39.15ᵒ

Figure S14. Contact angles of a) bare Zn b) Zn@TiO2 and c) Zn@Al2O3@TiO2 with water 

droplets.
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23

Table S1 Performance comparison of relevant works in a three-electrode system.

Electrode Materials Current 
Density Capacitance Working 

Electrode Electrolyte Ref.

3D NM@NiCoP 4 mA cm-2 26.1 μAh cm-2 1×1 cm2 2M KOH
This 
work

3D NM@NiCo BH 1 mA cm-2 75.58 μAh cm-2 1×1 cm2 2M KOH
1

NM@NiCoBH 1 mA cm-2 12 μAh cm-2 1×1cm2 1M KOH
2

NM@NiCoP 1 mA cm-2 11 μAh cm-2 1×1cm2 2M KOH
3

3D CoNiDHs/NiCo2O4/CFP 10 mA cm-2 67 μAh cm-2 3×4 cm2 1M KOH
4

Ni-CoN/GP 0.2 mA cm-2 6.7 μAh cm-2 1.5×2 cm2 3M KOH
5

CO3O4@Au@CuO 1 mA cm-2 33.3 μAh cm-2 / 1M Na2SO4
6

NiCo-BOH 1 mA cm-2 42.2 μAh cm-2 / 1M KOH
7

L-MCH 3 mA cm-2 49 μAh cm-2 1×2 cm-2 4M KOH
8

Ni/Co-N-350 2 mA cm-2 53 μAh cm-2 / 1M KOH
9

MoS2@Ni mesh 1 mA cm-2 1.62 μAh cm-2 1×2 cm-2 1M Na2SO4
10

Cu@Ni@Ni:Co-S 0.066 mAcm-2 6.94 μAh cm-2 1×2 cm2 PVA-KOH
11

Co3O4@NiO 5 mA cm-2 2.91 mAh cm-2 1×1 cm2 6M KOH
12

CC-CF@NiO 5 mA cm-2 0.35 mAh cm-2 2×2 cm2 2M KOH
13

mailto:NM@NiCo%20BH
mailto:NM@nicobh
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Table S2. Performance comparison of energy storage devices in a 2-electrode system.

Anode Cathode Electrolyte
s Capacity Current 

Density Ref

Zn@Al2O3@TiO
2

3D NM@NiCoP 2 M KOH 5.42 μAh cm-2 3 mA cm-2 This 
work

RGO HSC NiCo-P/Pox 6 M KOH 67.4 μAh cm-2 2 mA cm-2 14

Zn NiCO2O4 1 M KOH 57.3 μAh cm-2 0.5 mA cm-2 15

GOP Ni-Co-N/GP PVA-KOH 18.8 μAh cm-2 0.5 mA cm-2 5

rGO/CNT NiCoBH PVA-KOH 29.18 μAh cm-

2 0.5 mA cm-2 7

Cu@Ni@Ni:Co-
S NFs Cu@Ni@Ni:Co-S NFs PVA-KOH 1.21 μAh cm-2 0.025 mA cm-2 11

C-pen ink Ni-pen ink 1 M 
Na2SO4

4.64 μAh cm-2 1 mA cm-2 16

PEDOT-S:PSS PEDOT-S:PSS 1 M H3PO4 23.5 μAh cm-2 1 mA cm-2 17

siloxene 
nanosheets Zn WiS 3.11 μAh cm-2 0.05 mA cm-2 18

Ag 
NW/graphene

AgNW@NiCo/NiCo(
OH)2

2 M KOH 3.2 μAh cm-2 0.2 mA cm-2 19

MnO 
NP/TC/ITO 
NP/TC)50

MnO NP/TC/ITO 
NP/TC)50 PVA/LiCl 2.24 μAh cm-2 0.05 mA cm-2 20



25

Table S3. Comparison of the cycling stability of Zn@Al2O3@TiO2//3D NM@NiCoP from this 
work with other materials used in electrochemical energy storage devices in units of cm2.

cathode anode electrolyte Potential/V capacitance cycling Ref

3D NM@NiCoP Zn@Al2O3@TiO2 KOH 1.4-1.95 5.42 μAh cm-2

(3 mA cm-2)

91%
11000 
cycles

This 
work

CNT Zn ZnSO4 0.2−1.8 34.67 μAh cm-2

(1 mA cm-2)

87.4% 
6000 
cycles

21

poly(4,40- 
TDP)/AC Zn ZnSO4 0.1−1.9 1.2 mAh cm-2

(1 mA cm-2)

71%
2000 
cycles

22

Ti3C2 MXene Zn/CNT ZnSO4 0.1-1.2 81.5 μAh cm-2

(10 mA cm-2)

86.5%
6000 
cycles

23

Ti3C2Tx Zn PVA/ZnCl2 0-1.4 43.6 μAh cm-2

(10 mV s-1)

54.7%
50000 
cycles

24

MnO2 100Al2O3@Zn Zn(SO3CF3)2 0.8-1.8 3.96 μAh cm-2

(1 mA cm-2)

89.4%
1000 
cycles

25

MnO NP/TC/ITO 
NP/TC)50

MnO NP/TC/ITO 
NP/TC)50 PVA/LiCl 0-0.8 0.76 μAh cm-2

(0.5 mA cm-2)

76%
5000 
cycles

20

Ni-Co-N/GP GOP PVA-KOH 0-1.5 12.9 μAh cm-2

(5 mA cm-2)

89%
8000
cycles

5

Cu@Ni@Ni:Co-
S NFs

Cu@Ni@Ni:Co-S 
NFs PVA-KOH 0-0.8 0.45 μAh cm-2

(0.075 mA cm-2)

92%
10000
cycles

11
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