Ultrasensitive non-enzymatic electrochemical detection of paraoxon-ethyl in fruit samples using a 2D Ti₃C₂T_x/MWCNT-OH

Asmi Aris^{1,2}, Wulan Tri Wahyuni^{3,4}, Budi Riza Putra^{4,5}, Angga Hermawan⁶, Ferry Anggoro Ardy Nugroho⁷, Zhi Wei Seh^{*8}, Munawar Khalil^{*1,2}

¹Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia.
²Low Dimension Materials Lab., Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia.
³Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, 16680 Bogor, Indonesia.
⁴Tropical Biopharma Research Center, IPB University, 16680 Bogor, Indonesia.
⁵Research Center for Metallurgy, National Research and Innovation Agency (BRIN), South Tangerang, Banten 15315, Indonesia.
⁶Research Center for Nanotechnology System, National Research and Innovation Agency (BRIN), South Tangerang, Banten 15314, Indonesia.
⁷Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia.
⁸Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore.

> *Corresponding authors: sehzw@imre.a-star.edu.sg (Z.W. Seh) mkhalil@sci.ui.ac.id (M. Khalil)

Electronic Supporting Information

Figure S1. (a) FTIR Spectra of Ti₃AlC₂, Ti₃C₂T_x, MWCNT-OH, and Ti₃C₂T_x/MWCNT-OH,
(b) XRD Spectra of Ti₃C₂T_x, and Ti₃AlC₂, (c) Raman Spectra of Ti₃AlC₂, and Ti₃C₂T_x.

Figure S2. The linear relationship between the reduction potential of ethyl paraoxon and pH variations.

Figure S3. The linear correlation between the reduction current of ethyl paraoxon and the scan rate indicates a diffusion-controlled electrochemical process.

Figure S4. Cyclic voltammogram (insets: curve plot of scan rate analysis) of 1 mM K₃[Fe(CN)₆] in 0.1 M pH 8 phosphate buffer measured with (a) bare GCE, (b) Ti₃C₂T_x/GCEmodified GCE, and (c) Ti₃C₂T_x/MWCNT-OH modified GCE

Equation S1. Cottrell equation

$$I(t) = \frac{nFAD^{1/2}C}{\pi^{1/2}t^{1/2}}$$

The relationship between I(t) and $t^{1/2}$:

$$\frac{I(t)}{t^{1/2}} = \frac{nFAD^{1/2}C}{\pi^{1/2}}$$

Thus, the diffusion coefficient (D) is :

$$D^{1/2} = \frac{\frac{l}{t^{1/2}} \pi^{1/2}}{nFAC}$$

 $\frac{I(t)}{}$

 $D = 3.19 \ x \ 10^{-9} \ cm^2/s$

where $\overline{t^{1/2}}$ is derived based on the slope value (0.3191 x 10⁻⁷ µA s^{1/2}), *n* denotes the total number of electrons participating in the reaction, *D* represents the diffusion coefficient (cm²/s), *F* is Faraday's constant, *A* is the electrode area (0.31cm², obtained through cyclic voltammetry as shown in Fig. S4, ESI), *C* denotes the concentration (mol/cm³), and is assigned a value of 3.14.

$$D^{1/2} = \frac{0.3191 \,\mu A \, s^{1/2} \, x \, 3.14^{1/2}}{4 \, x \, 96500 \, C/mol \, x \, 0.31 \, cm^2 \, x \, 0.0000001 \, mol/cm^3}$$
$$D^{1/2} = \frac{(3.191 \, x \, 10^{-7} \, A \, s^{1/2}) \, x \, 3.14^{1/2}}{4 \, x \, 96500 \, C/mol \, x \, 0.31 \, cm^2 \, x \, 0.0000001 \, mol/cm^3}$$
$$D^{1/2} = \frac{5.656 \, x \, 10^{-7} \, A.s^{1/2}}{0.011926 \, C/cm}$$
$$D^{1/2} = \frac{5.656 \, x \, 10^{-7} \, A.s^{1/2}}{0.011926 \, A.s/cm}$$
$$D = (5.656 \, x \, 10^{-5})^2 \, cm^2/s$$