Designing highly tunable nanostructured peptide hydrogels using

differential thermal history to access variable cellular response

Sourav Sen^a, Sweta Mohanty^a and Sangita Roy ^{a*}

^aInstitute of Nano Science and Technology (INST), Sector 81, Knowledge City, 140306 Mohali,

Punjab, India

*Email: sangita@inst.ac.in

Table S1 Gelation behaviour of the Cbz-FF-OH dipeptide at room temperature with variable thermal history. The peptide solutions were heated at different gelation induction temperature to induce gelation along with the optical images of the solution/hydrogels formed using different thermal history.

 Table S2 Gelation behaviour of collagen.

Table S3 Fiber diameter of different hydrogels formed by heating at different gelation temperatures 40°C-90°C as revealed from AFM study.

Table S4 Stress relaxation time $(\tau_{1/2})$ obtained from stress-relaxation curve for different hydrogels at different thermal history and collagen hydrogel.

Table S5 Fiber diameter of the gel (Gel_50°C \rightarrow 80°C), i.e., after the heating of the Gel_50°C at 80°C for 1 hour, revealed from AFM study.

Figure S1 Fluorescence microscopic images of (a) ThT control, ThT bound to (b) Gel_40°C, (c) Gel_50°C, (d) Gel_60°C, (e) Gel_70°C, (f) Gel_80°C, (g) Gel_90°C and (h) collagen.

Figure S2 Amplitude sweep study of (a) Gel_50°C, (b) Gel_60°C, (c) Gel_70°C, (d) Gel_80°C and (e) Gel_90°C.

Figure S3 Morphological analysis of different hydrogels in DMEM at different thermal history, FESEM images of (a) Gel_40°C, (b) Gel_50°C, (c) Gel_60°C, (d) Gel_70°C, (e) Gel_80°C and (f) Gel_90°C.

1

Figure S4 (a) MTT assay of the peptide solution, (b) bright field images of cells adhered on peptide solution (Concentration 500 μ g/ml)

Figure S5 Bright field images of cells adhered on (a) control, (b) collagen and different hydrogels with diverse nanostructures (c) Gel_40°C, (d) Gel_50°C, (e) Gel_60°C, (f) Gel_70°C, (g) Gel_80°C and (h) Gel_90°C. (Gel concentration 500 µg/ml)

Figure S6 (a) Biocompatibility study of collagen and different hydrogels at different gelation induction temperatures on neuroblastoma SH-SY5Y cells. Bright field images of cells adhered on (b) control, (c) collagen and different hydrogels with diverse nanostructures (d) Gel_40°C, (e) Gel_50°C, (f) Gel_60°C, (g) Gel_70°C, (h) Gel_80°C and (i) Gel_90°C. (Gel concentration 500 µg/ml)

Figure S7 FESEM study of the different hydrogels (a) Gel_40°C, (b) Gel_50°C, (c) Gel_60°C, (d) Gel_70°C, (e) Gel_80°C and (f) Gel_90°C on the surface of the glass after rewetting with media in the 2D cell culture experiment.

Figure S8 FACS analysis of fibroblast L929 cells (a) in control and after treated with (b) collagen and different gels of Cbz-FF-OH fabricated with variable thermal history (c) Gel_40°C, (d) Gel_50°C, (e) Gel_60°C, (f) Gel_70°C, (g) Gel_80°C, (h) Gel_90°C. Percentage of live and dead cells indicated by the quadrant Q1 and Q3, respectively.

Figure S9 Biocompatibility study of Cbz-FF-OH peptide hydrogels formed by heating at 50°C and the thermoreversible hydrogel that is formed by melting Gel_50°C at 80°C for 1 Δ hour followed by cooling to RT to fabricate new hydrogel (Gel 50°C \rightarrow 80°C).

Figure S10 Bright field images of cells adhered on different hydrogels with diverse nanostructures (a) Cbz-FF-OH peptide hydrogels formed by heating at 50°C and (b) the thermoreversible hydrogel that is formed by melting Gel_50°C at 80°C for 1 hour followed by cooling to RT. (Gel concentration after dilution 500 μ g/ml)

Figure S11 Alamar study of Cbz-FF-OH peptide hydrogels formed by heating at 50°C and the thermoreversible hydrogel that is formed by melting Gel_50°C at 80°C for 1 hour followed by cooling to RT resulting in new hydrogel (Gel_50°C \rightarrow 80°C).

Table S1 Gelation behaviour of the Cbz-FF-OH dipeptide at room temperature with variable

 thermal history. The peptide solutions were heated at different gelation induction temperature

to induce gelation along with the optical images of the solution/hydrogels formed using different thermal history.

[CbzFFOH]	Gelation	Observations	Digital images
(mM)	induction	after 24 hours	of the gels
	temperature		
	(°C)		
30	40	Weak Gel	
30	50	Gel	
30	60	Gel	
30	70	Gel	QL
30	80	Gel	08
30	90	Gel	

Table S2 Gelation behaviour of collagen.

Concentration	Observation	Digital image
of Collagen	after 24 hours	of the gel
1 mg/ml	Self-supporting hydrogel	

Table S3 Fiber diameter of different hydrogels formed by heating at different gelation temperatures 40°C-90°C as revealed from AFM study.

Name of the gels	Fiber diameter	
	(nm)	
Gel_40°C	66 ± 4.5	
Gel_50°C	63 ± 3.5	
Gel_60°C	55 ± 4.1	
Gel_70°C	52 ± 2.8	
Gel_80°C	41 ± 2.1	
Gel_90°C	39 ± 2.4	
Collagen	40 ± 3.1	

Table S4 Stress relaxation time $(\tau_{1/2})$ obtained from stress-relaxation curve for different hydrogels at different thermal history and collagen hydrogel.

Name of the gels	Stress relaxation	
	time $(\tau_{1/2})$ (Sec)	
Gel_50°C	34.008	
Gel_60°C	3.427	
Gel_70°C	4.781	
Gel_80°C	2.447	
Gel_90°C	5.194	
Collagen	0.92	

Table S5 Fiber diameter of the gel (Gel_50°C $\xrightarrow{\Delta}$ 80°C), i.e., after the heating of the Gel_50°C at 80°C for 1 hour, revealed from AFM study.

Name of the gels	Fiber	
	diameter	
	(nm)	
(Gel 50°C \rightarrow 80°C)	43 ± 3.2	

a)	b)	с)	d)
<u>100 µm</u>	<u>100 µm</u>	<u>100 µm</u>	<u>100 μm</u>
е)	f)	g)	h)
<u>100 µm</u>	<u>100 µm</u>	<u>100 μm</u>	<u>100 µ</u> m

Figure S1 Fluorescence microscopic images of (a) ThT control, ThT bound to (b) Gel_40°C, (c) Gel_50°C, (d) Gel_60°C, (e) Gel_70°C, (f) Gel_80°C, (g) Gel_90°C, and (h) collagen.

Figure S2 Amplitude sweep study of (a) Gel_50°C, (b) Gel_60°C, (c) Gel_70°C, (d) Gel_80°C and (e) Gel_90°C.

Figure S3 Morphological analysis of different hydrogels in DMEM at different thermal history, FESEM images of (a) Gel_40°C, (b) Gel_50°C, (c) Gel_60°C, (d) Gel_70°C, (e) Gel_80°C and (f) Gel_90°C.

Figure S4 (a) MTT assay of the peptide solution, (b) bright field images of cells adhered on peptide solution (Concentration 500 μ g/ml)

Figure S5 Bright field images of cells adhered on (a) control, (b) collagen and different hydrogels with diverse nanostructures (c) Gel_40°C, (d) Gel_50°C, (e) Gel_60°C, (f) Gel_70°C, (g) Gel_80°C and (h) Gel_90°C. (Gel concentration 500 µg/ml)

Figure S6 (a) Biocompatibility study of collagen and different hydrogels at different gelation induction temperatures on neuroblastoma SH-SY5Y cells. Bright field images of cells adhered on (b) control, (c) collagen and different hydrogels with diverse nanostructures (c) (d) Gel_40°C, (e) Gel_50°C, (f) Gel_60°C, (g) Gel_70°C, (h) Gel_80°C and (i) Gel_90°C. (Gel concentration 500 μg/ml)

Figure S7 FESEM study of the different hydrogels (a) Gel_40°C, (b) Gel_50°C, (c) Gel_60°C, (d) Gel_70°C, (e) Gel_80°C and (f) Gel_90°C on the surface of the glass after rewetting with media in the 2D cell culture experiment.

Figure S8 FACS analysis of fibroblast L929 cells (a) in control and after treated with (b) collagen and different gels of Cbz-FF-OH fabricated with variable thermal history (c) Gel_40°C, (d) Gel_50°C, (e) Gel_60°C, (f) Gel_70°C, (g) Gel_80°C, (h) Gel_90°C. Percentage of live and dead cells indicated by the quadrant Q1 and Q3, respectively.

Figure S9 Biocompatibility study of Cbz-FF-OH peptide hydrogels formed by heating at 50°C and the thermoreversible hydrogel that is formed by melting Gel_50°C at 80°C for 1 Δ hour followed by cooling to RT to fabricate new hydrogel (Gel_50°C \rightarrow 80°C).

Figure S10 Bright field images of cells adhered on different hydrogels with diverse nanostructures (a) Cbz-FF-OH peptide hydrogels formed by heating at 50°C and (b) the thermoreversible hydrogel that is formed by melting Gel_50°C at 80°C for 1 hour followed by cooling to RT. (Gel concentration after dilution 500 μ g/ml)

Figure S11 Alamar study of Cbz-FF-OH peptide hydrogels formed by heating at 50°C and the thermoreversible hydrogel that is formed by melting Gel_50°C at 80°C for 1 hour Δ followed by cooling to RT resulting in new hydrogel (Gel_50°C \rightarrow 80°C).