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Fig. S1. Silica coated magnetic SERS tags, with 1.0 µm core size diameter and conjugated with 72 
nm silver nanoparticles. A-C) TEM images of the magnetic tags with one, two and three SiO2 
layers, respectively. Amplification images are shown, where the encoded silver nanoparticles can 
be well distinguished. D) SERS spectrum for the three SiO2 layers coated tags (average from at 
least 24 single particles).

Fig. S2. Effect of water as solvent over time on the SiO2 coated magnetic clusters.  As example, 
magnetic clusters of 1.0 µm core size were used, conjugated to 72 nm silver nanoparticles 
encoded with MBA as Raman label.
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Fig. S3. TEM images of ZnO coated magnetic SERS tags, with 1.0 µm core size diameter and 
conjugated with 72 nm silver nanoparticles. External coating was synthesized using A) ZnO-
protocol 1, B) ZnO-protocol 2 and C) ZnO-protocol 3.
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Fig. S4. TiO2 coated magnetic SERS tags, with 1.0 µm core size diameter and conjugated with 72 
nm silver nanoparticles. A-C) TEM images of the magnetic tags, TiO2 coated using TiO2-protocol 
1, 2 and 3, respectively. Amplification images are shown. D-F) SERS spectra for the three types of 
TiO2 layers tags. 

Fig. S5. Effect of water as solvent on TiO2 coated magnetic SERS tags, with 1.0 µm core size 
diameter and conjugated with 72 nm silver nanoparticles. A) TEM image of freshly prepared tags 
B) TEM image of same particles after four months in water. Amplification images are also shown.
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Fig. S6. A-E) TEM images from conjugated magnetic clusters with diverse core sizes encoded with 
4-MBA; a) 0.27 µm, b) 0.54 µm, c) 1.0 µm, d) 2.8 µm, with amplified image, e) 4.5 µm, with 
amplified image. f) Effect of SERS intensity on the different size of magnetic clusters, conjugated 
with 72 nm silver nanoparticles 4-MBA encoded. Maxima intensity (1072 cm-1) are the average 
value for at least 24 different spectra of single particles.
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Fig. S7: Raw Raman spectra used for the SOM training, outlining the variability of each particle, 
the average spectra and the Raman shift considered. 
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 DATA ANALYSIS:

For the Raman analysis, an algorithm based on Artificial Neural Networks (ANN) was used. The 
ANN can be effectively trained to distinguish multi-class Raman samples by running many 
combinations of spectra data. Self-Organizing Maps (SOM) is a custom ANN which has proved 
successful results when applied to Raman data.1 SOM can reduce the dimensionality of the 
Raman data. The map organizes spectra of the same class into the same region as clusters. 
Depending on the proximity of other clusters, the spectra are more similar or different from each 
other. In a SOM map, each grid element (hexagon) is represented as a neuron that only accepts 
spectra like the ones the neuron was trained on, thus providing information related to the 
different class fingerprints and similar classes based on proximity. SOM has been implemented 
using the MiniSOM2 module version = 2.3.1, which handles the entire SOM implementation and 
mathematics in Python, and later adapted by us for our needs.

Raman spectra were sampled from different synthesized magnetic SERS Tags. By acquiring 
large Raman maps from various batches of particles, a large dataset was obtained. Only the most 
intense spectrum was stored per particle, amounting to the total sample size described (Fig. S7). 
Due to an imbalance in the sample size, a total of 200 spectra were randomly selected from each 
dataset for training the SOM model. The lower spectra number of the MMTA functionalization 
did not affect the model’s accuracy, as all spectra have high intensity and are easily 
distinguishable among them. Fig. 6A shows the normalized average spectra (after cosmic ray 
removal, baseline subtraction and normalization) representative of each functionalization to be 
identified. The Raman measurements were acquired at 0.5 seconds and 10% laser power setting 
using the 785nm laser in the RA806 Renishaw system. The SOM model shows a dramatic 
improvement over the manual peak selection, offering a better presentation of the data, clearer 
insight, and greater classification accuracy.

Fig. 6B shows the projection of the hyperspectral data set into 2D space showing a clear 
separation of the spectra data from the eight different functionalization classes and the 
background class, arranged as in a 20 x 20 neuron grid and its classification score (Table S1). Each 
neuron (hexagon) is populated by colored dots representing a spectrum from the training data 
activated by that neuron. Neurons that do not activate any of the training data are shown in 
greyscale and have no colored dots. For each class, there is a clearly defined block of neurons 
with the same functionalization. Most of the background spectra are located centrally at the 
boundary between classes, meaning that some of the spectra from the functionalization's are 
relatively noisy and thus share the interface with the background class.
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Table S1. Classification report for the SOM analysis.

The trained SOM model allows us to perform automated classification of Raman spectra and 
assign them to a particular disease state. By looking up the model class of the neuron activated 
for a test sample, the proper classification for a spectrum can be obtained. We ran a multiplex 
experiment on a sample with all different labels (MBA, MCN, MMTA, MP, NPT, POT, TFBT, TSA), 
outputting the SOM activation map (Fig. S8B) overlapped with the white light image (Fig. S8A) of 
the measured region resulting in the colored white light image (Fig. 6C). Here, the trained model 
can easily identify the eight different labels, and by manual inspection (Fig. S8C), we confirmed 
that all classifications were correct. Moreover, statistical information can be obtained regarding 
the amount of a specific label present in the sample (Fig. 6C, inset).
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Fig. S8. A) White light image of the mixed magnetic SERS Tags. B) SERS map for the same Tags. C) 
Individual spectra from single Tags. Ground Truth done by manually adjusting all the peak 
parameters.
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For testing the SOM model accuracy, the 200 spectra per class dataset was split into 75% 
training (150 spectra) and 25% testing (50 spectra), obtaining the classification report in Table 
S1, where the output accuracy score was 96%, showing the good classification ability of the 
model. The lower values for precision in MP, lower recall for the BACKGROUND, and both with 
lower F1-score can be explained by the high variability in the raw Raman spectra (Fig. S7) and 
potentially some kind of commonality of peaks between MP and MBA, MCN, POT, and TSA. The 
fact that they have one similar peak range in 1065-1088cm-1 can lead to this kind of variability in 
the results if the signal intensity is low. However, the important parameter is the model’s 
accuracy, which is very high, indicating that the model has been properly trained.
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