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S1 Materials

S1.1 Synthesis and Characterization
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Figure S1: Absorption, PL, TEM sizing histogram and TEM imaging of the (a) perovskite
CsPbBr3 and (b) wurtzite CdS nanocrystals used in this work.

S1.1.1 CsPbBr3

For the synthesis of the 10 nm CsPbBr3 nanoparticles, a modified version of the protocol

reported by Baranov et al. was used.1

Perovskite precursors Cesium carbonate (Cs2CO3, 99.9% trace metals basis) was pur-

chased from Sigma Aldrich. Lead bromide (PbBr2, Puratronic 99.999% metals basis) was

purchased from Alfa Aesar. Oleic acid (OA, technical grade 90%), oleylamine (OLA, ap-

prox. C18-content 80-90%) and 1-octadecene (1-ODE, technical grade 90%) were purchased

from Thermo Fischer Scientific and further distilled. Anhydrous toluene (99.9% Extra dry,

AcroSeal) and anhydrous acetone (99.9% Extra dry, AcroSeal) were purchased from Thermo
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Fischer Scientific and used as is. All chemicals were stored in N2-filled gloveboxes until

further use.

For the Cs-oleate solution (0.07 M), 400 mg of cesium carbonate (1.23 mmol), 1.75 mL of

OA and 15 mL of 1-ODE were loaded into a 25 mL three-neck flask. The flask was degassed

for 1h at 105 °C and then heated under nitrogen to 120 °C until the cesium carbonate fully

dissolved (around 30 min). Since the stock solution turns turbid at room T, it was gently

heated at 100 °C before use.

Synthesis The following reaction mix was prepared in the glovebox. In a 20 ml vial, 73

mg PbBr2 (0.20 mmol), 0.5 ml OLA, 0.05 ml OA and 5 ml 1-ODE were added. The vial

was then equipped with a stirring bar and closed with a septum screw cap before bringing

out. Once outside the glovebox, the vial was attached to a nitrogen-filled Schlenk line with

the help of a needle and tube. Once the vial was placed under a continuous N2 flush, a

thermocouple was inserted into the solution through the septum cap. The vial was then

fixed inside an aluminum block that was placed onto a pre-heated stirring plate at 180 °C.

The solution was left to heat up for around 20 min until the reactants fully dissolved. As

soon as the solution had no visible traces of undissolved salts, the vial was lifted and placed

on top of the block while still under stirring. As the vial naturally cooled down, once the

temperature reached 170 °C, 0.5 ml of the Cs-oleate solution were swiftly injected. At this

stage the contents of the vial should turn clear yellow, then turbid bright green as the vial

is left to naturally cool down to room T.

For the purification, the stirring bar was removed and the vial was then centrifuged at

4000 rpm for 5 min. The resulting surnatant was discarded and the vial containing the

bright yellow precipitate was centrifuged once again at 4000 rpm for an additional 3 min.

The remaining surnatant fraction was carefully removed with the help of a cotton swap and

the sides of the vial were wiped with a lint-free tissue. The particles were then re-dispersed

in 1 ml of toluene. The stirring bar was added again, along with 35 µL of OLA and OA
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each in order to prevent degradation of the particles with the addition of polar solvents.

Then, under constant stirring, around 1.5 ml of anhydrous acetone were added in a dropwise

manner until the solution turned turbid. The vial was then finally centrifuged for 5 min at

5000 rpm and the resulting precipitate was re-dispersed in 1 ml toluene, giving a clear bright

green final sample.

S1.1.2 CdS

For the synthesis of the 12 nm CdS nanoparticles, a modified version of the protocol reported

by Tanghe et al. was used as described below.2

CdS Precursors Cadmium oxide (CdO, 99.5%), toluene (C7H8, 99.9%), methanol (CH3OH,

99.8%) and 2-propanol (C3H8O, 99.8%) were purchased from Chemlab Analytical. Tri-n-

octylphosphine (C24H51P, min. 97%) was purchased from Strem Chemicals. Elemental sulfur

(S > 99.5%) was purchased from Sigma Aldrich. 1-octadecane (C18H38, tech. 90%) and oleic

acid (C18H34O2, tech. 90%) were purchased from Thermo Fisher Scientific. All chemicals

were used as is with no further purifications.

For the Cd-oleate solution (0.50 M), 1.024 g CdO (8 mmol), 8 mL of oleic acid and 8

mL of 1-octadecane were added into a 50 mL three-necked flask. The flask was put under

vacuum and then degassed for 60 min at 110 °C. Next, the flask was filled with N2 and heated

to 300 °C where it was left for approximately 5 min until the reactants complexed and the

mixture turned clear. The obtained solution was then cooled down to room temperature

and stored in a 20 ml vial. Since the oleate precursor solidifies upon cooling, it should be

gently heated at 100 °C before use. The TOP-S solution (0.50 M) was prepared by adding

10 mL TOP and 0.160 g of S (5 mmol) in a 20 ml vial under N2. The solution was stirred

at 90 °C for 30 minutes until fully complexed and turned clear. Both precursors were stored

in nitrogen-filled gloveboxes until further use.
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Synthesis of 12 nm CdS Nanoparticles In a 50 mL three-neck flask, 8 mL of 1-

octadecane were added and degassed for 60 min at 110 °C. Afterwards, the flask was filled

with N2 and heated to 320 °C. In the meantime, an equimolar solution of Cd-oleate and

TOP-S was pre-mixed and slowly injected into the flask at a 2 mL/hour rate under stirring.

The total injection time is adjusted accordingly to synthesize the desired size each time. For

example, in order to obtain 12 nm cores, a total of 1.25 ml Cd-oleate and 1.25 ml TOP-S

were mixed and injected over the course of 75 min. At the end of the injection, the reaction

medium was left undisturbed at 320 °C for an additional 45 min to allow the remaining

precursors to fully react and promote size focusing/ripening of any smaller particles.

Afterwards, the reaction was cooled down to room temperature and underwent a purifi-

cation cycle. This included splitting the crude mix into four centrifugation tubes and adding

15 ml of a 2:1 ratio mix of 2-propanol and methanol in each tube. The particles were then

crashed by centrifuging at 5000 rpm for 10 min. This process was repeated for a total of two

purification steps. After the purification was complete, the particles were re-dispersed in 3

ml toluene for further use.
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S1.2 Optical Properties

S1.2.1 Intrinsic Absorption of CsPbBr3

For the halide perovskite CsPbBr3 we refer to the paper of Maes et al.3 who deduced the

intrinsic absorption coefficient through combined optical and analytical methods as given in

n-hexane:

µi,0(335 nm) = 1.59105 cm−1 (S1)

Using this value, one can normalize the absorption spectrum of the CsPbBr3 perovskite

nanocrystals dispersed in n-hexane, as shown in Figure S1. From this we can calculate for

example for the ca. 12 nm NCs a cross section using σ = µi,0V with V the volume of the

nanocrystal.4

S1.2.2 Intrinsic Absorption of wz-CdS

To calculate the intrinsic absorbance, we start from the dielectric constants of wurtzite CdS

from Adachi et al., for a wavelength of 300 nm. Due to the assymmetric nature of the crystal

and the random orientation, we can average out the dielectric constant for electrical fields

parallel and perpendicular to the c-axis

ϵ̃ =
1

3
· (6.663 + 3.623i)︸ ︷︷ ︸

E⊥c

+
2

3
· (6.601 + 3.466i)︸ ︷︷ ︸

E∥c

= 6.6217 + 3.5183i (S2)

From which we can calculate the intrinsic absorbance

µi =
2π

λns

· ℑ(ϵ̃) · |fLF |2 (S3)

Where ns the refractive index of the solvent, λ the wavelength at which we calculate the

intrinsic absorbance (here we will use 300 nm, as stated above), and |fLF |2 the squared
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local-field factor, defined as (assuming here spherical particles):

fLF =
3 · ϵs

ϵ̃+ 2 · ϵs
(S4)

With ϵs the dielectric constant for toluene, we find a value for the intrinsic absorbance

µi(300 nm) = 1.82× 105 cm−1 (S5)

Knowing that at short wavelengths the absorbance spectrum becomes size independent, we

can use this value to determine the wavelength-dependent intrinsic absorbance

µi(λ) =
A0(λ)

A0(300 nm)
· µi(300 nm) (S6)

From this we can calculate for example for the 12.1 nm BNCs a cross section series at

400 and 480 nm: σ(400 nm) = 7.3510−14 cm2 and σ(480 nm) = 3.810−14 cm2. To generate a

single electron-hole pair in a 12.1 nm BNC, one would hence need 6.7 µJ/cm2 and 11 µJ/cm2

at 400 and 480 nm respectively.
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S2 Experimental Methods

S2.1 Transient Absorption Spectroscopy

Samples were excited using 110 femtosecond pump pulses at 400 nm, through second har-

monic generation in alpha-BBO. Probe pulses were generated in a 1 mm thick CaF2 crystal

using the 800 nm fundamental. The pulses were delayed relative to the pump using a delay

stage with maximum delay of 3 ns for 400 nm pumping. The probe spectrum in our ex-

periments covers the UV-VIS window from 420 nm up to 700 nm. The quantum dots were

dispersed in an optically transparent solvent (toluene) and continuously stirred to avoid

charging or photo-degradation. The pump wavelength and sample concentration were cho-

sen to obtain an optimal trade-off between having a good signal at the band-edge transitions,

while still not having a too strong absorption at the pump-wavelength as to assure a uniform

pumping of the sample.

The average number of absorbed photons (or equivalently created excitons) at time zero,

noted as ⟨N⟩, can be calculated from the photon flux Jph, the cuvette length L and the

nanocrystal absorption cross section at the pump wavelength σλp : ⟨N⟩ = Jph × σλp ×
1−e

−α0,λp
L

α0,λpL
. The photon flux is calculated from the beam area, obtained through a Thorlabs

CCD beam profiler, and defined as Abeam = 2π× σxσy where σi is the standard deviation in

the i = x, y direction. Note that the carrier density n follows as ⟨N⟩/V , with V the volume

of the nanocrystal.

S2.2 Femtosecond Photoluminescence Spectroscopy

For the detection of the broadband PL transients on a sub-picosecond timescale, we used

the transient grating PL technique.5 The output of a femtosecond Ti:S laser was split into

pump and gate parts. For the pump part, second harmonic (400 nm) generation was used

in the experiments and focused to a 50 µm2 spot onto the sample. During the measurement,

the sample was continuously stirred in a 1 mm cuvette to avoid photo-induced degradation
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effects or charging of the nanoparticles. The PL signal from the sample was collected and

refocused onto the gate medium, a 1 mm fused silica crystal, using a pair of off-axis parabolic

mirrors. For the gate part, about 40 µJ of the 800 nm output was split using a 50/50 beam

splitter to generate the two gate beams and focused onto the gate medium at a crossing angle

of approximately 8 degrees and overlapped with the PL in a boxcar geometry. The two gate

beams, which spatial and temporal overlap inside the gate medium, generate a laser-induced

grating. This transient grating acts like an ultrafast optical shutter to temporally resolve

the broadband PL signals by diffracting the gated signal from the PL background. Two

achromatic lenses collimated and focussed the gated signals onto the spectrometer entrance

(Princeton Instruments SP 2150), and the gated PL spectra were measured by an intensified

CCD camera (Princeton Instruments, PIMAX3). The time delay between pump and gate

beams was controlled via a motorized optical delay line. For each transient PL spectrum,

120 000 shots at each gate time delay were accumulated.

S2.3 Carrier Density

The carrier density n is calculated based on Poissonian statistics and is defined as: n = ⟨N⟩
VQD

.

Here , ⟨N⟩ describes the mean of a Poissonian distribution used to model the light absorption

in an ensemble of nanoparticles as a series of random events. Such models are widely used

in the context of nanocrystals, with the small semantic difference that ⟨N⟩ then often refers

to “excitons” and not unbound electron-hole pairs, yet this makes no difference in the use

of the expression. ⟨N⟩ can be calculated from the photon flux Jph (in photons/cm2) and the

cross section for absorption, see section 1.4 above: ⟨N⟩ = Jph × σ.
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S2.4 Raw Data for Temperature Determination

Figure S2: PL emission at high photon energy at 3 ps time delay of CdS nanocrystals after
400 nm excitation.

Figure S3: TA spectra at high photon energy at 3 ps time delay of CdS nanocrystals after
400 nm excitation.
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Figure S4: PL emission at high photon energy at 3 ps time delay of perovskite nanocrystals
after 400 nm excitation.

Figure S5: TA spectra at high photon energy at 3 ps time delay of perovskite nanocrystals
after 400 nm excitation.

S3 Theory Model

S3.1 Transient Absorption

We start from the idea that A can be written as

A(E, T ) = A0(E, T )× (fh(E, T )− fe(E, T )) (S7)
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Figure S6: Asymmetrical simple bandstructure used to derive the theory in the paper.

where fh(E, T ), fe(E, T ) are defined as

fe(E, T ) =
1

1 + exp

EC(k)− EF,e

kBT


(S8)

fh(E, T ) =
1

1 + exp

EV (k)− EF,h

kBT


(S9)

which are the occupation chances of electrons in the conduction - and valence band respec-

tively. EC(k) and EV (k) are energy dependent through the carrier momentum k. We can

calculate the quasi fermi levels back from the carrier density n. The selection rule for an

absorption event is that there cannot be any momentum change when absorbing a photon

with frequency ω, so the relationship h̄ω = E = EC(k)− EV (k) holds, with

EC(k) = Eg +
h̄2k2

2m∗
e

(S10)
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EV (k) = − h̄2k2

2m∗
h

(S11)

where m∗
e and m∗

h are the effective masses of the electrons and holes, respectively. From this

we can calculate

E = Eg +
h̄2k2

2m∗
e

+
h̄2k2

2m∗
h

= Eg +
h̄2k2

2mr

(S12)

with mr the reduced effective mass
(

1
m∗

e
+ 1

m∗
h

)−1

. Solving this for k, we get

k0 =

√
2mr

h̄2 (E − Eg) (S13)

If we combine the selection rules with the FD occupation factors, we find

fe(E, T ) =
1

1 + exp

Eg +
h̄2k20
2m∗

e
− EF,e

kBT


=

1

1 + exp

Eg +
mr

m∗
e
(E − Eg)− EF,e

kBT


(S14)

fh(E, T ) =
1

1 + exp

 − h̄2k20
2m∗

h
− EF,h

kBT


=

1

1 + exp

 − mr

m∗
h
(E − Eg)− EF,h

kBT


(S15)

If we now approximate these FD distributions for the high energy tail, we find

fe(E, T ) ≈ Ce(T )× exp

(
−E − Eg

m∗
e

m∗
r
kBT

)
= Ce(T )× exp

(
−E − Eg

τe

)
(S16)

fh(E, T ) ≈ 1− Ch(T )× exp

(
−E − Eg

m∗
h

m∗
r
kBT

)
= 1− Ch(T )× exp

(
−E − Eg

τh

)
(S17)

where τi is defined as
m∗

i

mr
kBT for i = e, h. The pre factors are defined as (although these can

be seen as independent fitting parameters)

Ce(T ) = exp

(
EF,e − Eg

kBT

)
(S18)
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Ch(T ) = exp

(
−EF,h

kBT

)
(S19)

This we can use to approximate the high energy tail of A(E)

A(E, T ) = A0(E)×
[
1− Ch(T )× exp

(
−E − Eg

τh

)
− Ce(T )× exp

(
−E − Eg

τe

)]
(S20)

If we define ∆A(E, T ) = A(E, T )− A0(E), we can also find

∆A(E, T ) = −A0(E)×
[
Ch(T )× exp

(
−E − Eg

τh

)
+ Ce(T )× exp

(
−E − Eg

τe

)]
(S21)
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S3.2 Ultrafast Photo-Luminescence

We start from the idea that PL is the product of the Density of States with the FD distri-

butions of the conduction and valence bands

PL(E, T ) = ge,h(E) · fe(E) · (1− fh(E)) (S22)

where ge,h(E) is proportional with
√

E − Eg, and fe(E, T ) and fh(E, T ) are defined as

before. (1− fh(E, T )) here denotes the chance of the valence band not being occupied with

an electron (so: occupied with a hole).

The same selection rule for the transition applied from before, which is

h̄ω = E = EC(k)− EV (k) = Eg +
h̄2k2

2m∗
e

+
h̄2k2

2m∗
h

= Eg +
h̄2k2

2mr

(S23)

We can solve this to k to find

k0 =

√
2mr

h̄2 (E − Eg) (S24)

for this k value, defined as k0, a transition is allowed. We can use this in the FD distributions:

fe(E, T ) =
1

1 + exp

Eg +
h̄2k20
2m∗

e
− EF,e

kBT


=

1

1 + exp

Eg +
mr

m∗
e
(E − Eg)− EF,e

kBT


(S25)
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1− fh(E, T ) = 1− 1

1 + exp

 − EF,h − h̄2k20
2m∗

h

kBT


(S26)

= 1− 1

1 + exp

 − EF,h − mr

m∗
h
(E − Eg)

kBT


(S27)

=

1 + exp

 − EF,h − mr

m∗
h
(E − Eg)

kBT

− 1

1 + exp

 − EF,h − mr

m∗
h
(E − Eg)

kBT


(S28)

=
1

1 + exp

EF,h +
mr

m∗
h
(E − Eg)

kBT


(S29)

Now we can start approximating:

fe(E, T ) ≈ Ce(T )× exp

(
−E − Eg

τe

)
(S30)

1− fh(E, T ) ≈ Ch(T )× exp

(
−E − Eg

τh

)
(S31)

So we finally end up with

PL(E, T ) = Ce · Ch ·
√
E − Eg · exp

(
−E − Eg

τe

)
· exp

(
−E − Eg

τh

)
(S32)

= Ce · Ch ·
√
E − Eg · exp

(
−E − Eg

τr

)
(S33)
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where τr =
(

1
τe
+ 1

τh

)−1

, which actually equals

τr =
τh + τe
τhτe

(S34)

=

m∗
h

mr
+ m∗

e

mr

m∗
h

mr
· m∗

e

mr

× kBT (S35)

=
m∗

h +m∗
e

m∗
h ·m∗

e

· 1

mr

× kBT (S36)

= kBT (S37)

So we obtain:

PL(E, T ) = Ce(T ) · Ch(T )×
√

E − Eg · exp
(
−E − Eg

kBT

)
(S38)

We can combine the product of the two pre factors C(T ) = Ce(T ) · Ch(T ).

It is clear from this derivation that the PL case is easier to fit: the exponential simplifies to

a single Boltzmann without any additional factors in the exponent, contrary to the transient

absorption case.

In summary, the final expressions to use are given by:

PL(E, T ) = C(T ) ·
√
E − Eg · exp

(
−E − Eg

kBT

)
(S39)

and

∆A(E, T ) = −A0(E)×
[
Ch(T )× exp

(
−E − Eg

τh

)
+ Ce(T )× exp

(
−E − Eg

τe

)]
(S40)
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S3.3 Ce and Ch

Lets take another look at the constants:

Ce(T ) = exp

(
EF,e − Eg

kBT

)
(S41)

Ch(T ) = exp

(
−EF,h

kBT

)
(S42)

To find the relationship between these two pre factors we need to find the quasi Fermi levels:

EF,e = kBT · F−1
1/2

(
n

Ne,eff

)
+ Eg (S43)

EF,e = −kBT · F−1
1/2

(
n

Nh,eff

)
(S44)

Where the Fermi-Dirac integral cannot be solved analytically, andNi,eff is given by 2
(

m∗
i kBT

2πh̄2

)3/2
but can be approximated in two regimes:

F1/2(η) =


eη η ≪ −1

4
3

(
η3

π

)1/2
η ≫ −1

Which each can be inverted to find

F−1
1/2(ν) =


ln (ν) ν ≪ e−1

[
9π
16

· ν2
]1/3

ν ≫ e−1

We can take a look at each of these cases seperately.
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ν ≫ e−1 => n
Ni,eff

≫ e−1 The simplest case, since the logarithm and exponential cancel

each other out. This holds for low carrier densities.

EF,e = kBT · ln
(

n

Ne,eff

)
+ Eg (S45)

EF,h = −kBT · ln
(

n

Nh,eff

)
(S46)

From which we can find Ce(T ) and Ch(T )

Ce(T ) = exp

kBT · ln
(

n
Ne,eff

)
+ Eg − Eg

kBT

 (S47)

= exp

(
ln

(
n

Ne,eff

))
(S48)

=
n

Ne,eff

(S49)

and

Ch(T ) = exp

kBT · ln
(

n
Nh,eff

)
kBT

 (S50)

= exp

(
ln

(
n

Nh,eff

))
(S51)

=
n

Nh,eff

(S52)

Filling in the definition of Ni,eff and dividing the two pre-factors, we get

Ce(T )

Ch(T )
=

(
m∗

h

m∗
e

)3/2

(S53)

ν ≪ e−1 => n
Ni,eff

≪ e−1 Here the solution is not quite so elegant, and we are in the high

density regime

EF,e = kBT ·

[
9π

16

(
n

Ne,eff

)2
]1/3

+ Eg (S54)
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EF,h = −kBT ·

[
9π

16

(
n

Nh,eff

)2
]1/3

(S55)

Which we again fill in in the definition of the pre-factors

Ce(T ) = exp


kBT ·

[
9π
16

(
n

Ne,eff

)2]1/3
+ Eg − Eg

kBT

 (S56)

= exp

[9π
16

(
n

Ne,eff

)2
]1/3 (S57)

= exp

([
9π

64
· n2

]1/3
· 2πh̄2

m∗
ekBT

)
(S58)

and

Ch(T ) = exp


kBT ·

[
9π
16

(
n

Nh,eff

)2]1/3
kBT

 (S59)

= exp

[9π
16

(
n

Nh,eff

)2
]1/3 (S60)

= exp

([
9π

64
· n2

]1/3
· 2πh̄2

m∗
hkBT

)
(S61)

Before dividing the two pre-factors, we can define c =
[
9π
64

]1/3 · 2πh̄2

kB
for ease of notation.

When we divide the two factors we get

Ce(T )

Ch(T )
= exp

(
c · n

2/3

T
×
[

1

m∗
e

− 1

m∗
h

])
(S62)

Here we see that the pre-factors become temperature and carrier density dependent. In-

terestingly, in the limit where the effective masses become equal, this ratio becomes one,

meaning the ratio of Ch and Ce becomes independent of n, T . Similarly, the denominator in
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both exponentials become 2kBT .

We can check the limits of the different regions for both electrons and holes. The limit is

nthr

Ni,eff

≈ e−1 (S63)

which we can rewrite as

nthr = e−1 · 2
(
m∗

i kBT

2πh̄2

)3/2

(S64)

We can calculate this limit for both the electrons and holes. Due to the typically higher mass

of the holes, the threshold density will be higher and as such the independence will work

for larger carrier densities for CV than for CC . Of course, for the actual temperature fit,

the constant ratio will hold only up until one of the two pre-factors become carrier density

dependent.

These results can be summarised in Figure S7. (a) shows the exact ratio (full lines)

and the two approximations (constant low limit, which is around 6.5, and coloured dashed

lines for the high limit). (b) shows the change in threshold carrier density in function of

temperature for electrons (red), holes (blue) and also the crossing point between low and

high limit (black). The latter case is when the two limits equal each other. In general we can

conclude here that for a reasonable carrier density (n = 1020 cm−1 is about the maximum)

the lower limit applies. Using this approximation, we can rewrite ∆A

∆A(E, T ) = −A0(E) · C(T )×
[
(m∗

e)
3/2 × exp

(
−E − Eg

τh

)
+ (m∗

h)
3/2 × exp

(
−E − Eg

τe

)]
(S65)

The pre-factor only gives part of the image, since the slopes of both the electron and hole

exponentials will be scaled according to the τi factor. For the case that m∗
e ≪ m∗

h, we can

see that the electron exponential will decay much quicker although it has a higher weight.

This can be seen in Figure S8, where the sum of exponentials is shown and it is clear that

there are two different regimes. For this specific case, it can be seen that mostly the hole
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Figure S7: (a) Ratio of the pre-factors of the two exponentials derived from the TA temper-
ature fitting. (b) the threshold for the two regimes in function of the temperature.

exponential will in fact be relevant in our fitting region, despite its lower weight. For the

general case we can look at the tipping point Ethr where the two exponentials become equal

to each other (and as such for energies higher than this value the hole exponential will be

the dominant decay):

Ce(T )× exp

(
−Ethr − Eg

τe

)
= Ch(T )× exp

(
−Ethr − Eg

τh

)
(S66)

This can be solved for Ethr

Ethr = Eg +
m∗

h +m∗
e

m∗
h −m∗

e

· kT × ln

(
Ce(T )

Ch(T )

)
(S67)

Which will only depend linearly on the temperature for the low density regime

Ethr = Eg +
m∗

h +m∗
e

m∗
h −m∗

e

· kT × 3

2
· ln
(
m∗

h

m∗
e

)
(S68)
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Figure S8: (a)-(d) magnitude of each of the exponentials for 4 different combinations,
low/high temperature and carrier density. (e) Ethr in function off the carrier density and
plotted for a range of temperatures. The dotted line shows the high density limit.

and will become temperature independent for the high density regime

Ethr = Eg +
m∗

h +m∗
e

m∗
h −m∗

e

· kT ×
(
c · n

2/3

T
×
[

1

m∗
e

− 1

m∗
h

])
(S69)

= Eg +

(
9π

64

)1/3

· 2πh̄
2

mr

· n2/3 (S70)

As long as we have moderate densities and temperatures, we can see from Figure S8 that the

hole exponential will be dominant. Or putting it differently: if we choose the lower limit well

(high enough) then we can fit the TA data with a single exponential. Interestingly, the low

carrier regime effect also scaled with the difference between the effective masses of electrons

and holes, so if they become equal the effect dissapears. This means that for equal masses

and low carrier densities, you can start fitting from the bandgap energy.
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