Nitrogen Doped Nanocarbon as Metal-Free Catalyst for CO₂

Hydroboration

Tao Du, ^{a,b,c} Peng Zhang, ^{b*} Guofeng Wang, ^b Zhen Jiao, ^a Jiancheng Zhou, ^a and Yuxiao Ding ^{b*}

^a School of Chemistry and Chemical Engineering, Southeast University, 2 Dongnandaxue Rd, Nanjing 211189, Jiangsu, Peoples R China

^b State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, Peoples R China

^c Joint Research Inistitute Southeast University & Monash University, Suzhou 215123, Jiangsu, Peoples R China.

* Correspondence author: <u>zhangpengz@licp.cas.cn</u>; <u>yuxiaoding@licp.cas.cn</u>

Fig. S1 The XRD spectra of OLC1500 and NOLC400. Collected in X-ray diffractometer (SmartLab 3KW, Rigaku Corporation)

Fig. S2 The XPS survey of OLC1500 and NOLCx catalysts

Sample	C/%	O/%	N/%
OLC	98.3	1.7	-
NOLC400	86.3	3.0	10.7
NOLC600	95.2	2.2	2.6
NOLC800	96.5	2.5	0.9

Table S1 Elemental composition of samples from XPS analysis

Sample	Surface area m ² /g	Pore Volume cm ³ /g	Mean Pore Size nm
OLC	435.7	1.48	13.6
NOLC400	230.7	0.91	15.4
NOLC600	307.8	1.01	14.9
NOLC800	369.1	1.18	12.8

Table S2 The surface area and porosity of samples

The gas product composition analyzed by GC

The gaseous products from the CO₂ hydroboration catalyzed by NOLC400 are analyzed using the gas chromatography (GC9720 plus, Fuli) equipped with two FID detectors and one TCD detector (reaction condition: 10 mg NOLC400, 2 mmol HBpin, 100 °C, 4 MPa CO₂, 2 h). The high-concentration gas products are analyzed using the TCD detector. Low-concentration CO would be transformed into CH₄ and then analyzed using the FID **1** detector. The gaseous hydrocarbons are analyzed by FID **2** detector, such as CH₄, C₂H₂, C₂H₄, C₂H₆, C₃H₆ and so on. According to the TCD signal, a small amount of H₂ is produced (3200ppm) from the decomposition of borane apart from the reactant CO₂. The small amount of O₂ (1600ppm) and N₂ (11333ppm) are from the leakage of air during sampling. From the FID **1** signal, only negligible amounts of CO and CH₄ are found to be produced during CO₂ hydroboration. Meanwhile, no other gaseous hydrocarbons were generated.

Fig. S3 TCD signal of the gas product

Fig. S4 FID 1 signal of the gas product

Fig. S5 FID 2 signal of the gas product

Fig. S6 The recycling performance of NOLC400 catalyst (the catalytic performance in the recycling experiments is normalized by that of fresh NOLC400 catalyst). Reaction condition: 10 mg catalyst, 2 mmol HBpin, 100 °C, 4 MPa CO_2 , 2 h. After each reaction, the catalyst was separated from the reaction medium through centrifugation and washed with toluene for the next cycle.

Entry	Catalyst	TOF/h ⁻¹	Catalytic System	Reference
1	Co(acac) ₃ -NaHBEt ₃	15	Homogeneous	1
2	PhSi(CH ₂ PPh) ₃ -Co	2.8	Homogeneous	2
3	NaBH ₄	14.5	Homogeneous	3
4	(tBuPCP)PdH	2.1	Homogeneous	4
5	1-Bcat-2-PPh ₂ -C ₆ H ₄	17	Homogeneous	5
6	TBD, DBU	0.9, 3.2	Homogeneous	6
7	NOLC400	9.5	Heterogeneous	This work

 Table S3 The comparation of catalytic performance with the reported catalysts

Fig. S7 The structural model of N-doped carbon surface and the aromatic molecules containing specific N species for mimicking the N-doping structure on carbon surface

Fig. S8 The indication of B-O¹ structure in the dioxaborolane ring of HBpin whose vibration mode would change in the reaction intermediate and the final product

Reference

1. S. R. Tamang and M. Findlater, *Dalton Trans*, 2018, 47, 8199-8203.

2. A. Aloisi, J. C. Berthet, C. Genre, P. Thuery and T. Cantat, *Dalton Trans*, 2016, 45, 14774-14788.

3. K. Fujiwara, S. Yasuda and T. Mizuta, Organometallics, 2014, 33, 6692-6695.

4. M. R. Espinosa, D. J. Charboneau, A. Garcia de Oliveira and N. Hazari, *Acs Catal*, 2018, 9, 301-314.

5. M. A. Courtemanche, M. A. Legare, L. Maron and F. G. Fontaine, *J Am Chem Soc*, 2013, **135**, 9326-9329.

6. C. Das Neves Gomes, E. Blondiaux, P. Thuery and T. Cantat, *Chem-Eur J*, 2014, **20**, 7098-7106.