Electronic Supplementary Information

Towards 1D supramolecular chiral assemblies based on porphyrin-calixarene complexes

Massimiliano Gaeta, *a Chiara M. A. Gangemi,^b Matteo Barcellona,^a Gabriele Travagliante,^a Marco Milone,^b Anna Notti, *^b Maria E. Fragalà,^a Ilenia Pisagatti,^b Melchiorre F. Parisi,^b Roberto Purrello^a and Alessandro D'Urso*^a

^aDipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy. Email: <u>adurso@unict.it</u>, <u>gaetamassimiliano@libero.it</u>

^bDipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy. E-mail: <u>anotti@unime.it</u>

Experimental:

Commercial reagent grade chemicals were used as received without any further purification. Solvents were dried by standard methods. Melting points were determined on a Kofler hot stage apparatus and are uncorrected. ¹H and ¹³C NMR (Attached Proton Test, APT) spectra were acquired at 25 °C at 500 and 125 MHz, respectively. Chemical shifts are reported in ppm and are referenced to residual solvent peaks ($\delta_{H} = 7.27$ ppm and $\delta_{C} = 77.0$ ppm for CDCl₃), ($\delta_{H} = 3.31$ ppm for CD₃OD) or dioxane ($\delta_{H} = 3.53$ ppm and $\delta_{C} = 66.3$ ppm) added as an internal standard. Samples for high resolution mass spectrometry (HRMS) analyses were diluted in methanol HPLC-MS grade (final concentration 5 μ M) and directly injected into a Xevo G2-XS Q-ToF mass spectrometer (Waters Corporation, Wilmslow, UK) equipped with a REIMS source HRMS (ESI)analyses were performed both in positive and negative ionization mode over a mass range of 100–1800 *m/z* with a scan time of 0.5 s.

Synthetic procedures:

Trisulfonated-diphenyl porphyrin H₂DPPS3:

H₂**DPPS3** was obtained according to a slightly modified literature procedure.^{S1} 5,15-Diphenylporphine^{S2} (80 mg, 0.17 mmol) was sulfonated with 98% H₂SO₄ (15 mL) at 100°C for 4 h. The reaction mixture was let to reach r.t., diluted with water (80 mL), neutralized with K₂CO₃ and then the unreacted porphyrin was extracted with CH₂Cl₂. The aqueous phase was filtered through a nylon membrane of 0.8 µm pore diameter. The solid residue on the filter was solubilized with methanol. The crude product was purified by reverse phase column chromatography (RP-18; MeOH/H₂O, 4:1) to yield 45 mg (0.05 mmol, 32%) of the title compound. ¹H NMR (CD₃OD) δ 11.20 (s, 1 H, *meso*-H) and 10.46 (s, 1 H, *meso*-H), 9.66 (d, *J* = 4.5 Hz, 1 H, β-pyrrolic), 9.61 (d, *J* = 4.5 Hz, 1 H, β-pyrrolic), 9.43 (d, *J* = 4.5 Hz, 1 H, β-pyrrolic), 9.24 (s, 1 H, β-pyrrolic), 9.15 (d, *J* = 4.5 Hz, 1 H, β-pyrrolic), 9.13 (d, *J* = 4.5 Hz, 1 H, β-pyrrolic), 8.96 (d, *J* = 4.5 Hz, 1 H, β-pyrrolic), 8.34 (m, 8 H, H_m and H_o). HRMS (ESI) m/z: 233.0118 ([M-3H]³⁻, calcd for C₃₂H₁₉N₄O₉S₃³⁻: 233.0110).

N,N'-bis(5,11,17,23-tetranitro-25,26,27-tripropoxy-28-[3-carbonylpropoxy]calix[4]arene)-1,2diaminocyclohexane ((*S*,*S*)-**8NO**₂-**BC4** and (*R*,*R*)-**8NO**₂-**BC4**):

(*R*,*R*)-**8NO**₂-**BC4**. 25-(3-Chlorocarbonylpropoxy)-5,11,17,23-tetranitro-26,27,28-tripropoxycalix[4]arene 1^{S3} (309 mg, 0.37 mmol) was dissolved in anhydrous CH₂Cl₂ (5 mL) and cooled to -10 °C. To this solution a mixture of (1*R*,2*R*)-(–)-1,2-diaminocyclohexane (21 mg, 0.18 mmol) and triethylamine (38 mg, 0.37 mmol) in anhydrous CH₂Cl₂ (2 mL) was added *via* a cannula. The reaction mixture was stirred overnight at room temperature. After the addition of water (5 mL), the product was extracted with CH₂Cl₂ and dried over Na₂SO₄. The solid obtained after evaporation of the solvent was dissolved in CH₂Cl₂ (5 mL) containing triethylamine (0.1 mL) and the final solution evaporated to dryness. The crude mixture was then subjected to column chromatography (SiO₂, cyclohexane/AcOEt 2:1) to give pure (*R*,*R*)-**8NO**₂-**BC4** in the form of a pale yellow solid (225 mg, 71%), mp 247–250 °C. ¹H NMR (CDCl₃) δ 7.74 (s, 4 H), 7.72 (s, 4 H), 7.35 (s, 4 H), 7.29 (s, 4 H), 6.15 (bd, 2 H), 4.52 (d, *J* = 14.0 Hz, 4 H), 4.50 (d, *J* = 13.6 Hz, 2 H), 4.48 (d, *J* = 14.3 Hz, 2 H), 4.05– 3.96 (m, 12 H), 3.90 (t, *J* = 7.2 Hz, 4 H), 3.60 (broad t, 2 H), 3.41 (d, *J* = 14.4 Hz, 4 H), 3.39 (d, *J* = 14.0 Hz, 2 H), 3.38 (d, *J* = 13.5 Hz, 2 H), 2.22–2.11 (m, 8 H), 2.01 (d, *J* = 11.7 Hz, 2 H), 1.95–1.85 (m, 12 H), 1.76 (d, *J* = 7.7 Hz, 2 H), 1.32–1.18 (m, 4 H), 1.06 (t, *J* = 7.5 Hz, 6 H), 0.98 (t, *J* = 7.4 Hz, 12 H) ppm; ¹³C NMR (CDCl₃) δ

S1 R. Rubires, J. Crusats, Z. El-Hachemi, T. Jaramillo, M. López, E. Valls, J.-A. Farrera and J. M. Ribó, *New J. Chem.*, 1999, **23**, 189–198.

S2 F. Gou, X. Jiang, R. Fang, H. Jing and Z. Zhu, ACS Appl. Mater. Interfaces 2014, 6, 6697–6703.

S3 G. Gattuso, G. Grasso, N. Marino, A. Notti, A. Pappalardo, S. Pappalardo and M. F. Parisi, *Eur. J. Org. Chem.*, 2011, 5696–5703.

172.2, 162.12, 162.10, 161.3, 161.1, 142.76, 142.74 (×3), 135.92, 135.91, 135.8 (×2), 135.06, 135.02, 135.00, 134.99, 124.4 (×2), 124.3, 124.2, 123.62, 123.60, 123.55, 123.50, 77.8, 77.7, 77.6, 75.1, 53.9, 32.4, 32.2, 31.12, 31.08, 25.9, 24.5, 23.3, 23.2, 10.3, 10.01, 10.0 ppm. MALDI *m/z* = 1734.8 [M+Na]⁺.

(S,S)-**8NO₂-BC4**. Obtained in a similar manner as (R,R)-**8NO₂-BC4** and with comparable yields. The NMR spectra of (S,S)-**8NO₂-BC4** are identical to those of its mirror image (R,R)-**8NO₂-BC4**.

N,*N*'-bis(5,11,17,23-tetraamino-25,26,27-tripropoxy-28-[3-carbonylpropoxy]calix[4]arene)-1,2diaminocyclohexane ((*S*,*S*)-**8NH₂-BC4** and (*R*,*R*)-**8NH₂-BC4**):

(*R*,*R*)-**8NH**₂-**BC4**. A suspension of diamide (*R*,*R*)-**8NO**₂-**BC4** (50 mg, 0.029 mmol) and Ni/Raney in THF (10 mL) was stirred at room temperature for 18 h under H₂ (1 atm) and then filtered over celite. The solvent was evaporated under reduced pressure and the solid residue formed was triturated with cyclohexane and then filtered, to provide the octaamine derivative (37 mg, 0.025 mmol, 86%) which was used in the next step without further purification. ¹H NMR (CDCl₃) δ 6.09, 6.08, 6.03, 5.99 (4 × s, 4 H each), 5.80 (d, *J* = 7.3 Hz, 2 H), 4.30 (d, *J* = 13.3 Hz, 4 H), 4.27 (d, *J* = 13.2 Hz, 2 H), 4.26 (d, *J* = 13.2 Hz, 2 H), 3.78–3.69 (m, 16 H), 3.61 (broad t, 2 H), 3.8–2.8 (hump, 16 H), 2.92 (d, *J* = 13.2 Hz, 8 H), 2.2–1.7 (m, 24 H), 1.33–1.18 (m, 4 H), 0.96, 0.94, 0.93 (3 × t, *J* = 7.0 Hz, 6 H each) ppm. MALDI *m*/*z* = 1495 [M+Na]⁺.

(S,S)-**8NH**₂-**BC4**. Obtained in a similar manner as (R,R)-**8NH**₂-**BC4** and with comparable yields. The NMR spectrum of (S,S)-**8NH**₂-**BC4** is identical to that of its mirror image (R,R)-**8NH**₂-**BC4**.

N,*N*'-bis(5,11,17,23-tetraamino-25,26,27-tripropoxy-28-[3-carbonylpropoxy]calix[4]arene)-1,2-diaminocyclohexane octahydrochloride ((1*R*,2*R*)- and (1*S*,2*S*)-**BC4**):

(R,R)-**BC4**. Addition of an excess of 4 M HCl in dioxane (0.5 mL) to a solution of (R,R)-**8NH₂-BC4** (37 mg, 0.025 mmol) in CH₂Cl₂ (1 mL) afforded, after solvent evaporation, (R,R)-**BC4** in quantitative yields. ¹H NMR (D₂O) δ 6.67, 6.47 (2 × s, 8 H each), 4.29 (d, *J* = 13.6 Hz, 2 H), 4.28 (d, *J* = 13.6 Hz, 2 H), 4.26 (d, *J* = 13.6 Hz, 2 H), 4.24 (d, *J* = 13.5 Hz, 2 H), 3.82–3.64 (m, 16 H), 3.39 (broad s, 2 H), 3.15 (d, J = 13.9 Hz, 8 H), 2.12 (m, 4 H), 2.00 (m, 4 H), 1.74–1.65 (m, 14 H), 1.54 (bs, 2 H), 1.10 (broad s, 4 H), 0.782 (t, J = 7.3, 6 H), 0.775 (t, J = 7.3, 6 H), 0.765 (t, J = 7.4, 6 H) ppm; ¹³C NMR (D₂O) δ 175.4, 157.4, 157.07, 156.97, 156.94, 137.5 (×2), 137.4, 137.3, 137.03, 137.00, 136.8, 136.7, 125.1, 124.92, 124.90, 124.7, 123.3, 123.1, 122.8, 122.7, 78.0, 77.9, 77.8, 75.0, 53.6, 33.3, 32.3, 30.9 (×2), 26.5, 24.8, 23.6 (×2), 23.5, 10.58, 10.57, 10.4 ppm. HRMS (ESI) m/z: 736.4448 ([M+2H]²⁺, calcd for C₈₈H₁₁₆N₁₀O₁₀²⁺: 736.4432); 747.4373 ([M+H+Na]²⁺, calcd for C₈₈H₁₁₅N₁₀O₁₀Na²⁺: 747.4342); 758.4268 ([M+2Na]²⁺, calcd for C₈₈H₁₁₄N₁₀O₁₀Na²⁺: 758.4252).

(S,S)-**BC4.** Obtained in a similar manner as (R,R)-**BC4**. The NMR spectra of (S,S)-**BC4** are identical to those of its mirror image (R,R)-**BC4**. HRMS (ESI) m/z: 736.4453 ([M+2H]²⁺, calcd for C₈₈H₁₁₆N₁₀O₁₀²⁺: 736.4432); 747.4379 ([M+H+Na]²⁺, calcd for C₈₈H₁₁₅N₁₀O₁₀Na²⁺: 747.4342); 758.4275 ([M+2Na]²⁺, calcd for C₈₈H₁₁₄N₁₀O₁₀Na²⁺: 758.4252).

Fig. S1 UV-vis absorption spectra of independent solutions of **H**₂**DPPS3** (2 μM) at different pH values (pH = 10.00; 8.00; 7.30; 7.10; 6.47; 6.05; 5.86; 4.92; 4.59; 3.91; 3.60; 3.50; 2.44; 1.88; 1.36; 0.9).

Fig. S2 UV-vis absorption spectra of an aqueous solution of **H**₂**DPPS3** (2 μM) during the pH titration (pH = 10.00; 9.77; 9.50; 9.00; 8.40; 7.12; 6.55; 6.17; 5.64; 4.88; 4.37; 4.11; 3.80; 3.69; 3.59; 3.47; 3.24; 3.00; 2.74; 2.40).

Fig. S3 UV-vis absorption spectra recorded over the course of the titration of a 2.5 μ M aqueous solution of **BC**₄ at pH 7.00 with successive aliquots of an aqueous solution of **H**₂**DPPS3** ([**H**₂**DPPS3**] ranged from 0.25 to 11.0 μ M). Inset: UV-vis spectrum of an aqueous solution of **BC**₄ (2.5 μ M) at pH 7.0.

Fig. S4 UV-vis absorption spectra of H_2 DPPS3 in aqueous solution at pH = 7.0 ([H_2 DPPS3] ranged from 1.0 to 4.0 μ M).

Fig. S5 Likely equilibrium taking place between two different arrangements of the 1:1-(H₂DPPS3/BC₄) complex.

Fig. S6 UV-vis absorption spectrum of an aqueous solution of (R,R)- or (S,S)-**BC4** (50 μ M) at pH 2.0. Inset: Circular dichroism spectra of (R,R)- (black trace) or (S,S)-**BC4** (red trace) at the same molar concentration and pH value.

Fig. S7 Plot and experimental fit of the absorbance values at λ = 300 nm (black circles), as function of pH values (pH = 10.70; 9.94; 9.41; 8.19; 3.68; 2.51; 2.19; 1.95; 1.83; 1.72; 1.60; 1.50) of an aqueous solution of (*R*,*R*)-**8NH₂-BC4** (10 μ M).

Fig. S8 UV-vis spectra of an aqueous solution of H_2 DPPS3 (3 μ M) at pH = 10.00 (black traces) and CuDPPS3 (3 μ M) at pH = 10.00 (brown traces). The magnification of the Q-band region is reported in the inset.

Fig. S9 UV-vis spectra of an aqueous solution of **CuDPPS3** (3 μ M) at pH = 10.00 (brown trace) and after 24 hrs. at pH= 2.00 (red trace).

Fig. S10 UV-vis absorption spectra recorded over the course of the titration of a 2.5 μ M aqueous solution of (*R*,*R*)- or (*S*,*S*)-**BC4** at pH 2.00 with consecutive aliquots of an aqueous solution of **CuDPPS3** ([**CuDPPS3**] ranged from 0.25 to 11.0 μ M). Inset: UV-vis spectrum of an aqueous solution of (*R*,*R*)- or (*S*,*S*)-**BC4** (2.5 μ M) at pH 2.00.

Fig. S11 UV-vis absorption spectra of CuDPPS3 in aqueous solution at pH = 2.0 ([CuDPPS3] ranged from 1.0 to 4.0 μM).

Fig. S12 RLS spectra observed at the break-points upon portion-wise addition of **CuDPPS3** to a 2.5 μ M aqueous solution of (*R*,*R*)-**BC4** or (*S*,*S*)-**BC4** at pH 2.0 ([**CuDPPS3**] = 0 μ M for black trace, ([**CuDPPS3**] = 3.75 μ M for red trace, [**CuDPPS3**] = 5 μ M for blue trace, [**CuDPPS3**] = 8.75 μ M for green trace, [**CuDPPS3**] = 10 μ M for cyan trace).

Fig. S13 High resolution mass spectra of the triply charged ion ([M-3H]³⁻) of the porphyrin H₂DPPS3.

Fig. S14 High resolution mass spectra of the doubly charged ions ($[M+2H]^{2+}$, $[M+H+Na]^{2+}$ and $[M+2Na]^{2+}$) of the biscalizarene (*S,S*)-**BC4**.

Fig. S15 High resolution mass spectra of the doubly charged ions ($[M+2H]^{2+}$, $[M+H+Na]^{2+}$ and $[M+2Na]^{2+}$) of the biscalizarene (*R*,*R*)-**BC4**.

Fig. S16 ¹H NMR (500 MHz, 298 K, CD₃OD) of **H**₂**DPPS3**; (*) indicates the residual solvent peak.

Fig. S17 ¹H NMR (500 MHz, 298 K, CDCl₃) of (*R*,*R*)-**8NO₂-BC4**; (*) indicates the residual solvent peak.

Fig. S18 ¹³C (APT) NMR (500 MHz, 298 K, CDCl₃) of (*R*,*R*)-**8NO₂-BC4**; (*) indicates the residual solvent peak.

Fig. S19 ¹H NMR (500 MHz, 298 K, CDCl₃) of (*R*,*R*)-**8NH₂-BC4**; (*) indicates the residual solvent peak.

Fig. S20 ¹H NMR (500 MHz, 298 K, D₂O) of (*R*,*R*)-**BC4**; (*) indicates the suppressed residual solvent peak, (#) refers to dioxane added as an internal standard.

Fig. S21 ¹³C (APT) NMR (500 MHz, 298 K, D_2O) of (*R*,*R*)-**BC4**; (*) refers to dioxane added as an internal standard.