Supporting information

Construction of bimetallic oxy-hydroxides based on Ni(OH)₂ nanosheets for sensitive non-enzymatic glucose detection via electrochemical oxidation and incorporation

Weiji Dai, * ¹ Bing Wu,¹ Fan Zhang,¹ Yuxi Huang,¹ Cuijiao Zhao,¹ Yudong Zhang,¹ Can Cui,¹ Jing Guo,² Saifang Huang*¹

¹ School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

² School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China

*Corresponding authors.

E-mail: daiweiji@just.edu.cn (W. Dai), s.huang@just.edu.cn (S. Huang)

Figure S1. i-t curve of Ni(OH)₂@NF at the potential of 0.656 V (vs. Ag/AgCl) in 1 M

KOH solution.

Figure S2. XRD pattern of Ni(OH)₂@NF and NiO_x/Ni(OH)₂@NF.

Figure S3. High-resolution XPS spectra: (a) Ni 2p, (b) O 1s.

Figure S4. (a and b) SEM images of Ni(OH)₂@NF.

Figure S5. EDS pattern of (CoNi)O_x/Ni(OH)₂@NF.

Figure S6. CV curves at scan rate of 10 mV s⁻¹ with and without addition of 1 mM glucose: (a) Ni(OH)₂@NF, (b) NiO_x/Ni(OH)₂@NF, (c) (FeNi)O_x/Ni(OH)₂@NF, and (d) (CrNi)O_x/Ni(OH)₂@NF.

Figure S7. CV curves at scan rate of 10 mV s⁻¹ with and without addition of 1 mM glucose.

Figure S8. CV curves with addition of different concentration of glucose at scan rate of 10 mV s⁻¹: (a) Ni(OH)₂@NF, (b) NiO_x/Ni(OH)₂@NF, (c) (FeNi)O_x/Ni(OH)₂@NF, and (d) (CrNi)O_x/Ni(OH)₂@NF.

Figure S9. CV curves in a solution containing 0.1 M NaOH and 1 mM glucose with different scan rates ranging from 10 to 100 mV s⁻¹: (a) Ni(OH)₂@NF, (b) NiO_x/Ni(OH)₂@NF, (c) (FeNi)O_x/Ni(OH)₂@NF, and (d) (CrNi)O_x/Ni(OH)₂@NF.

Figure S10. The current response verses the square root of the scan rate derived from the CV curves in Figure S8: (a) $Ni(OH)_2@NF$, (b) $NiO_x/Ni(OH)_2@NF$, (c) (FeNi)O_x/Ni(OH)₂@NF, and (d) (CrNi)O_x/Ni(OH)₂@NF.

Figure S11. i-t curves at different voltages with incremental addition of 1 mM glucose: (a) Ni(OH)₂@NF, (b) NiO_x/Ni(OH)₂@NF, (c) (FeNi)O_x/Ni(OH)₂@NF, and (d) (CrNi)O_x/Ni(OH)₂@NF.

Figure S12. i-t curves with addition of different concentration of glucose: (a) $Ni(OH)_2@NF$, (b) $NiO_x/Ni(OH)_2@NF$, (c) $(FeNi)O_x/Ni(OH)_2@NF$, and (d) $(CrNi)O_x/Ni(OH)_2@NF$.

Figure S13. The corresponding concentration-current fitting curves derived from Figure S11: (a) Ni(OH)₂@NF, (b) NiO_x/Ni(OH)₂@NF, (c) (FeNi)O_x/Ni(OH)₂@NF, and (d) (CrNi)O_x/Ni(OH)₂@NF.

Electrocatalysts	Sensitivity	Linear range	References
	/mA mM ⁻¹ cm ⁻²	/mM	
Pt/Au/BDD	1.7	0.01-7.5	Biosensors and Bioelectronics
			98 (2017) 76-82
NiCoFe-LDH/FF	5.717	0.01-0.1	Dalton Trans., 2023, 52, 16661-
			16669
Hollow Ni(OH)2@CuS	2.74	0.01-6.64	Applied Surface Science 634
			(2023) 157650
NiCo-LDH@NI-NTNW	3.4	~1.05	Journal of Colloid and Interface
	4.6	1.05-2.52	Science 591 (2021) 384-395
MOF-derived CuO/CNT	4.34	0.0005-0.1	Sensors & Actuators: B.
			Chemical 398 (2024) 134713
Ni(OH)2&NiOOH fîlm/Ni	5.7584	0.001-0.13	Journal of The Electrochemical
			Society, 166 (16) B1732-B1741
			(2019)
CuFeO _x /CF	2.614	0.396-1.224	Colloids and Surfaces A:
			Physicochemical and
			Engineering Aspects 703 (2024)
			135301
CuO nanowire array	1.95	0.1-6	Electrochimica Acta 299 (2019)
			470-478
(CoNi)O _x /Ni(OH) ₂ @NF	3.59	0.01-1.14	This work

 Table S1. Sensing performances of electrocatalysts in recent literatures.

Figure S14. i-t curves with addition of 10 μ M of glucose: (a) Ni(OH)₂@NF, (b) NiO_x/Ni(OH)₂@NF, (c) (FeNi)O_x/Ni(OH)₂@NF, and (d) (CrNi)O_x/Ni(OH)₂@NF.

Figure S15. i-t curves with addition of with addition of glucose, AA, UA, DA, NaCl, and fructose: (a) $Ni(OH)_2@NF$, (b) $NiO_x/Ni(OH)_2@NF$, (c) $(FeNi)O_x/Ni(OH)_2@NF$, and (d) $(CrNi)O_x/Ni(OH)_2@NF$.

Figure S16. Long-term stability tests with addition of 1 mM glucose: (a) Ni(OH)₂@NF,
(b) NiO_x/Ni(OH)₂@NF, (c) (FeNi)O_x/Ni(OH)₂@NF, and (d) (CrNi)O_x/Ni(OH)₂@NF.