Supporting Information

Construction of Sc-NiFe-LDH electrocatalyst for highly efficient electrooxidation

of 5-hydroxymethylfurfural at industrial current density

Yufeng Wu¹, Zhiyan Hou¹ and Changlong Wang^{1*},

1 Institute of Circular Economy, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China.

* Author to whom corresponce should be addressed:

E-mail: clwang1987@126.com.

Table of Contents

1.	Supplementary Figures4
Fig	gure S1 SEM image of NiFe-LDH (a) 1 µ m, (b) 500 nm4
Fig	gure S2 The FDCA yield, FE and selectivity on Sc-NiFe-LDH at varied potentials in 10
m№	A HMF solution
Fig	gure S3 Current densities, charges vs. time curves of Sc-NiFe-LDH6
Fig	gure S4 (a-e) The HPLC standard curves of HMF and corresponding products7
Fig	gure S5 CV curves of different electrodes in 1 M KOH with 10 mM HMF at different scan
rate	es. (a) NiFe-LDH, (b) Sc-NiFe-LDH
Fig	gure S6 TEM image of the Sc-NiFe-LDH after six successive electrolysis cycles9
Fig	gure S7 LSV curves for Sc-NiFe-LDH in 1 M KOH with and without 0.1 M Glucose10
Fig	gure S8 LSV curves for Sc-NiFe-LDH in 1 M KOH with and without 0.1 M Furfural11
Fig	gure S9 LSV curves for Sc-NiFe-LDH in 1 M KOH with and without 0.1 M Benzylalcohol.
Fig	gure S10 LSV curves for Sc-NiFe-LDH in 1 M KOH with and without 0.1 M Urea13
Fig	gure S11 LSV curves for Sc-NiFe-LDH in 1 M KOH with and without 0.1 M Ethanol14
Fig	gure S12 LSV curves for Sc-NiFe-LDH in 1 M KOH with and without 0.1 M Methanol.
Fig	gure S13 Two possible pathways for the oxidation of HMF to FDCA16
Fig	gure S14 The equivalent circuit used for modeling the measured electrochemical response.
2. 5	Supplementary Tables

Table S1 Comparison of the catalytic performances of Sc-NiFe-LDH and known catalysts for
the electrooxidation of 100 mM HMF
Table S2 Comparison of FDCA yield with several electrochemical HMF catalysts reported
recently
Table S3 The resistance of each component for Sc-NiFe-LDH in 1 M KOH. 22
Table S4 The resistance of each component for Sc-NiFe-LDH in 1 M KOH with 10 M HMF.
Table S5 The resistance of each component for NiFe-LDH in 1 M KOH23
Table S6 The resistance of each component for NiFe-LDH in 1 M KOH with 10 M HMF. 23

1. Supplementary Figures

Figure S1 | SEM image of NiFe-LDH (a) $1\mu m$, (b) 500 nm.

Figure S2 | LSV of Sc-NiFe-LDH with different Sc contents in 1 M KOH with 10 mM HMF.

Figure S3 | The FDCA yield, FE and selectivity on Sc-NiFe-LDH at varied potentials in 10 mM HMF solution.

Figure S4 | Current densities, charges vs. time curves of Sc-NiFe-LDH.

Figure S5 | (a-e) The HPLC standard curves of HMF and corresponding products.

Figure S6 | CV curves of different electrodes in 1 M KOH with 10 mM HMF at different

scan rates. (a) NiFe-LDH, (b) Sc-NiFe-LDH.

 $\label{eq:Figure S7} Figure \ S7 \ | \ TEM \ image \ of \ the \ Sc-NiFe-LDH \ after \ six \ successive \ electrolysis \ cycles.$

Figure S8 | LSV curves for Sc-NiFe-LDH in 1 M KOH with and without 0.1 M Glucose.

Figure S9 | LSV curves for Sc-NiFe-LDH in 1 M KOH with and without 0.1 M Furfural.

Figure S10 | LSV curves for Sc-NiFe-LDH in 1 M KOH with and without 0.1 M

Benzylalcohol.

Figure S11 | LSV curves for Sc-NiFe-LDH in 1 M KOH with and without 0.1 M Urea.

Figure S12 | LSV curves for Sc-NiFe-LDH in 1 M KOH with and without 0.1 M Ethanol.

Figure S13 | LSV curves for Sc-NiFe-LDH in 1 M KOH with and without 0.1 M Methanol.

Figure S14 | Two possible pathways for the oxidation of HMF to FDCA, and the FTIR of each pure product.

 $Figure \ S15 \ | \ The \ equivalent \ circuit \ used \ for \ modeling \ the \ measured \ electrochemical \ response.$

2. Supplementary Tables

Catalysts	HMF concentration (mM)	Yield (%)	E ₁₀ (vs. RHE)/HMFOR	Current density at 1.50 V vs. RHE (mA/cm ²)	E ₅₀ (vs. RHE)/HMFOR	Conc. (%)	FE	Stability (h)	Selectivity (%)	Reference
Sc-NiFe- LDH	10	96.72	1.357	802.82	1.37	100	96.54	110	99.47	This work
d-NiFe LDH/CP	10	96.8	1.48	15	1.64	97.35	84.47	/	99.4	Ind Eng Chem Res, 2020 , 59: 17348-17356. Nat
InOOH-OV	10	92.41	1.421	40	1.616	98.68	90	25	88.4	Commun. 2023 , 14, 2040
Co-P@NF	10	89.8	1.392	/	1.53	100	/	2	89.5	Chem. Eng. J. 2023 , 469, 143832
VN/NiF	10	97	1.36	140	1.373	99	86	/	/	Adv. Funct. Mater. 2019 , 29, 1904780

Table S1 | Comparison of the catalytic performances of Sc-NiFe-LDH and known catalysts for the electrooxidation of 100 mM HMF

Catalysts	Condition	E (V vs. RHE)/Current density (mA/cm ²)	FE	Time (h)	Reference
Sc-NiFe-LDH	1 M KOH 10 mM HMF	1.50 V/802.8 mA/cm ²	96.5	110	This work
Ni ₃ S ₂ /NF	1 M KOH+10 mM HMF	1.423 V/100 mA/cm ²	98	/	J. Am. Chem. Soc. 2016, 138, 13639-13646
NixB/NF	1 M KOH+10 mM HMF	1.45 V/100 mA/cm ²	100	/	Angew. Chem., Int. Ed. 2018, 57, 11460- 11464
CoNW/NF	1 M KOH+10 mM HMF	1.764 V/100 mA/cm ²	96.6	/	Green Chem. 2019, 21, 6699-6706
CoO/CoSe ₂	1 M KOH+10 mM HMF	1.48 V/100 mA/cm ²	97.9	/	Green Chem. 2020, 22, 843-849
E-CoAl-LDH- NSA	1 M KOH+10 mM HMF	1.59V/100 mA/cm ²	99.4	/	Appl. Catal., B. 2021, 299, 120669
Co ₃ O ₄ /CF	1 M KOH+10 mM HMF	1.40 V /100 mA/cm ²	92.9	/	Appl. Catal., B. 2022, 307, 121209

 Table S2 | Comparison of FDCA yield with several electrochemical HMF catalysts reported recently.

Catalysts	Condition E (V vs. RHE)/Current density (mA/cm ²)		FE	Time (h)	Reference
Ni(OH) ₂ - NiOOH/NiFeP	1 M KOH+10 mM HMF	1.437 V /100 mA/cm ²	94	/	Appl. Catal., B. 2022, 311, 121357
Co-NixP@C	1 M KOH+10 mM HMF	1.54 V /100 mA/cm ²	98.9	/	J. Colloid Interface Sci. 2022, 629, 451- 460
NiRu NPs	1 M KOH+10 mM HMF	1.5 V /110 mA/cm ²	99.7	/	ACS Sustainable Chem. Eng. 2023, 11, 13441-13450
Co ₃ S ₄ /Ni ₃ S ₂	1 M KOH+10 mM HMF	1.489 V /100 mA/cm ²	100	/	Green Chem. 2023, 25, 8698-8705
CuH_NWs@Ce: NiH_NSs/Cu	1 M KOH+10 mM HMF	1.43 V /100 mA/cm ²	98.0	30	Inorg. Chem. 2023, 62, 12534-12547
NiMo ₃ S ₄ -R	1 M KOH+10 mM HMF	1.395 V /100 mA/cm ²	98.5	12	Appl. Catal., B. 2023, 323, 122126
Co_9S_8 (Mi_3S_2 /NF	1 M KOH+10 mM HMF	1.46 V /100 mA/cm ²	89.04	/	Mater. Today Nano. 2023, 23, 100373
CoO–Co@C/CF	1 M KOH+10 mM HMF	1.471 V /100 mA/cm ²	99.4	20	Molecules. 2023, 28, 3040

Catalysts	Condition	E (V vs. RHE)/Current density (mA/cm ²)	FE	Time (h)	Reference
P-Co ₃ O ₄ - NBA@NF	1 M KOH+10 mM HMF	1.524 V /100 mA/cm ²	97.01	/	Appl. Catal., A. 2024, 669, 119497

Potential	R _s	$\mathbf{R}_{\mathbf{p}}$	R _{ct}	CPE1	CPE2
1.15 V vs. RHE	0.3342	44.9	10330	0.003889	0.00378
1.20 V vs. RHE	0.3385	28.43	2511	0.005315	0.003971
1.25 V vs.RHE	0.3485	19.83	1117	0.01025	0.005325
1.30 V vs. RHE	0.3517	19.71	514.4	0.007785	0.02177
1.35 V vs. RHE	0.3296	4.236	80.01	0.01796	0.08332
1.40 V vs. RHE	0.3012	0.6041	20.34	0.405	0.7023
1.45 V vs. RHE	0.2902	0.01239	1.078	1	0.97
1.50 V vs. RHE	0.2840	0.01024	0.1022	1.8417	1
1.55 V vs. RHE	0.2891	0.009233	0.08389	1	0.6787
1.60 V vs. RHE	0.2521	1*10-12	0.05324	0.3131	0.9005

 Table S3 | The resistance of each component for Sc-NiFe-LDH in 1 M KOH.

Potential	R _s	R _p	R _{ct}	CPE1	CPE2
1.15V vs. RHE	0.4096	15.8	2.629*109	0.003907	0.004842
1.20V vs. RHE	0.412	10.48	2331	0.006598	0.004051
1.25 V vs. RHE	0.41	5.121	975.8	0.005165	0.01016
1.30 V vs. RHE	0.4108	3.687	383.1	0.007383	0.01613
1.35 V vs. RHE	0.4003	1.402	95.88	0.01225	0.02463
1.40 V vs. RHE	0.394	1.089	16.65	0.03679	0.1019
1.45 V vs. RHE	0.3559	0.7132	6.873	0.2368	0.872
1.50 V vs. RHE	0.3476	0.4402	0.02964	1	0.3404
1.55 V vs. RHE	0.2455	0.2834	0.4876	1*10-12	1
1.60 V vs. RHE	0.6271	0.06972	0.4227	0.1547	1

 Table S4 | The resistance of each component for Sc-NiFe-LDH in 1 M KOH with 10 M

HMF.

Potential	R _s	R _p	R _{ct}	CPE1	CPE2
1.15 V vs. RHE	0.3941	179.7	5.572*1010	0.001312	0.002968
1.20 V vs. RHE	0.3904	14.24	6239	0.002307	0.002861
1.25 V vs.RHE	0.3889	10.48	2869	0.00357	0.00149
1.30 V vs. RHE	0.392	4.203	350.9	0.004616	0.008771
1.35 V vs. RHE	0.3216	2.586	66.71	0.01914	0.06565
1.40 V vs. RHE	0.2789	0.6035	13.42	0.4021	1
1.45 V vs. RHE	0.2768	1.35	0.06531	1	0.6748
1.50 V vs. RHE	0.2748	0.2853	0.06952	0.8851	0.3722
1.55 V vs. RHE	0.2771	0.1253	0.05063	0.7845	0.2642
1.60 V vs. RHE	0.2851	0.04092	0.08101	0.2267	0.7646

Table S5 | The resistance of each component for NiFe-LDH in 1 M KOH.

Potential	R _s	R _p	R _{ct}	CPE1	CPE2
1.15 V vs. RHE	0.4069	79.27	2.479*10 ¹⁰	0.002392	0.005983
1.20 V vs. RHE	0.4178	10.55	1753	0.002043	0.007201
1.25 V vs. RHE	0.4162	5.668	711.9	0.00254	0.01042
1.30 V vs. RHE	0.4094	3.123	251.1	0.003964	0.01715
1.35 V vs. RHE	0.3967	1.862	68.75	0.008578	0.03028
1.40 V vs. RHE	0.3708	1.203	1.914	0.3168	0.0823
1.45 V vs. RHE	0.3118	0.06084	1.801	0.4673	1
1.50 V vs. RHE	0.3181	0.08432	0.4478	0.2844	1
1.55 V vs. RHE	0.06071	0.08432	0.4478	0.1745	1

Table S6 | The resistance of each component for NiFe-LDH in 1 M KOH with 10 M HMF.