Theoretical Insights into Spacer Molecule Design to Tune Stability, Dielectric, and Exciton Properties in 2D Perovskites

Xing Liu, Hejin Yan, Zheng Shu, Xiangyue Cui, Yongqing Cai*

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and

Materials Engineering, University of Macau, Macau SAR 999078, China;

*Corresponding author. Email: yongqingcai@um.edu.mo

Figure S1. Relaxed crystal structure of monolayer (PMA)PbI₄ perovskite. Pb-I-Pb bond angle and I-I-I bond angle are highlighted in the enlarged figure and the figure viewed along c axis.

Figure S2. Relaxed crystal structure of monolayer (THMA)PbI₄ perovskite. Pb-I-Pb bond angle and I-I-I bond angle are highlighted in the enlarged figure and the figure viewed along c axis.

Figure S3. Relaxed crystal structure of monolayer (FUMA)PbI₄ perovskite. Pb-I-Pb bond angle and I-I-I bond angle are highlighted in the enlarged figure and the figure viewed along c axis.

Figure S4. Relaxed crystal structure of bilayer (PMA)PbI₄ perovskite. Pb-I-Pb bond angle and I-I-I bond angle are highlighted in the enlarged figure and the figure viewed along c axis.

Figure S5. Relaxed crystal structure of bilayer (THMA)PbI₄ perovskite. Pb-I-Pb bond angle and I-I-I bond angle are highlighted in the enlarged figure and the figure viewed along c axis.

Figure S6. Relaxed crystal structure of bilayer (FUMA)PbI₄ perovskite. Pb-I-Pb bond angle and I-I-I bond angle are highlighted in the enlarged figure and the figure viewed along c axis.

		a(Å)	<i>b</i> (Å)	α(°)	$\beta(^{\circ})$	γ(°)
Monolayer	(PMA) ₂ PbI ₄	8.49, 8.67 ^a	9.05, 9.14 ^a	90.00	89.57	90.00
	(THMA) ₂ PbI ₄	8.53, 8.70 ^b	8.78, 8.83 ^b	89.76	90.00	90.00
	(FUMA) ₂ PbI ₄	8.55	8.81	90.07	90.00	90.00
Bilayer	(PMA) ₂ PbI ₄	8.56, 8.67ª	9.14, 9.14ª	90.00	90.00	90.00
	(THMA) ₂ PbI ₄	8.60, 8.70 ^b	8.81, 8.83 ^b	90.00	90.00	90.00
	(FUMA) ₂ PbI ₄	8.45	8.82	90.00	90.00	90.00

Table S1 Relaxed lattice constants of 2D RP phase of Pb-I perovskites (*n*=1) with different spacer molecules of PMA, THMA and FUMA.

^a Data from ref. 1. ^b Data from ref. 2.

Table S2 Geometrical characteristics of octohedra in relaxed 2D RP phase of Pb-I perovskites (n=1) with different spacer molecules of PMA, THMA and FUMA.

		Pb-I- Pb	I-I-I	Thickness	Pb-I	Pb-I
		(0)	(°)	(Å)	equatorial	vertical
		(')			(Å)	(Å)
Monolayer	(PMA) ₂ PbI ₄	153	116	16.61	3.191	3.236
	(THMA) ₂ PbI ₄	149	121	16.47	3.177	3.245
	(FUMA) ₂ PbI ₄	149	121	15.34	3.184	3.231
Bilayer	(PMA) ₂ PbI ₄	155	114	30.90	3.208	3.236
	(THMA) ₂ PbI ₄	150	120	31.06	3.183	3.251
	(FUMA) ₂ PbI ₄	148	122	29.79	3.179	3.245

		Average	Average	Average
		octahedral	octahedron	quadratic
		angle	distortion	elongation
		variance	parameter	(‹λ›)
		(σ_{oct}^2)	(Δ)	
Monolayer	(PMA) ₂ PbI ₄	13.25	4.65E-05	1.00005
	(THMA) ₂ PbI ₄	5.59	9.97E-05	1.00010
	(FUMA) ₂ PbI ₄	5.84	4.92E-05	1.00005
Bilayer	(PMA) ₂ PbI ₄	14.46	1.18E-05	1.00001
	(THMA) ₂ PbI ₄	7.14	7.95E-05	1.00008
	(FUMA) ₂ PbI ₄	5.88	7.97E-05	1.00008

Table S3 Structural parameters quantifying internal distortions in relaxed 2D RP phase of Pb-I perovskites (n=1) with different spacer molecules of PMA, THMA and FUMA.

Reference

- 1. M.-H. Tremblay, J. Bacsa, B. Zhao, F. Pulvirenti, S. Barlow and S. R. Marder, Chem. Mater., 2019, 31, 6145-6153.
- C. Ni, Y. Huang, T. Zeng, D. Chen, H. Chen, M. Wei, A. Johnston, A. H. Proppe, Z. Ning, E. H. Sargent, P. Hu and Z. Yang, Angew Chem Int Ed Engl, 2020, 59, 13977-13983.