## **Supplementary Information**

## Catalytic Effects of Iron Adatoms in Poly(*para*-phenylene) Synthesis on Rutile TiO<sub>2</sub>(110)

Mohammadreza Rostami<sup>1</sup>, Biao Yang<sup>1,2,\*</sup>, Xiaochuan Ma<sup>3</sup>, Sifan You<sup>2</sup>, Jin Zhou<sup>3</sup>, Meng Zhang<sup>2</sup>, Xuefeng Cui<sup>3</sup>, Haiming Zhang<sup>2</sup>, Francesco Allegretti<sup>1</sup>, Bing Wang<sup>3</sup>, Lifeng Chi<sup>2,\*</sup>, Johannes V. Barth<sup>1,\*</sup>

<sup>1</sup> Physics Department E20, School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany

<sup>2</sup> Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China

<sup>3</sup> Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, 230026, China

\* Email: jvb@tum.de; chilf@suda.edu.cn; yangbiao@suda.edu.cn

## SUPPLEMENT MEASUREMENTS AND RESULTS

In Fig. S1g, STS exhibits a band gap of about 3.3 eV for rutile TiO<sub>2</sub> (110) surface <sup>1-5</sup>.



**Fig. S1.** STM images of a clean rutile TiO<sub>2</sub> (110) surface; (a) The distance between the brightest and darkest points (Z-height) = 1.32 nm,  $V_s = -1$  V,  $I_t = 10$  pA. (b) Z-height = 0.80 nm,  $V_s = -1$  V,  $I_t = 10$  pA. (c) Z-height = 0.25 nm,  $V_s = -1$  V,  $I_t = 10$  pA. (d) An STM image of a DBTP monolayer after deposition at room temperature on a rutile TiO<sub>2</sub> surface; Z-height = 1.44 nm,  $V_s = -1$  V,  $I_t = 10$  pA. STM acquisition temperature: 77 K. (1×1) LEED patterns of a clean rutile TiO<sub>2</sub> (110) surface with (e)

 $E_{LEED} = 60 \text{ eV}$  and (f)  $E_{LEED} = 90 \text{ eV}$ . (g) Tunneling spectra of rutile TiO<sub>2</sub> (110). STM / STS data acquisition at T=77 K.



**Fig. S2.** Bias-dependent STM images of DBTP dimers after annealing at 400 K on a rutile  $TiO_2(110)$  surface and subsequent coupling. (a) Z-height = 0.22 nm,  $V_s = -1.5$  V,  $I_t = 10$  pA. (b) Z-height = 0.22 nm,  $V_s = -2$  V,  $I_t = 10$  pA. (c) Z-height = 0.22 nm,  $V_s = -2.5$  V,  $I_t = 10$  pA. (d) Z-height = 0.22 nm,  $V_s = 1$  V,  $I_t = 10$  pA. STM acquisition temperature: 77 K.



**Fig. S3.** Bias-dependent STM images of 3AGNRs after annealing at 600 K on a rutile TiO<sub>2</sub> (110) surface. (a) Z-height = 0.56 nm,  $V_s = -1$  V,  $I_t = 10$  pA. (b) Z-height = 0.65 nm,  $V_s = -1.5$  V,  $I_t = 10$  pA. (c) Z-height = 0.64 nm,  $V_s = -0.5$  V,  $I_t = 10$  pA. (d) Z-height = 0.71 nm,  $V_s = -0.5$  V,  $I_t = 10$  pA. (e) Z-height = 0.66 nm,  $V_s = -2$  V,  $I_t = 10$  pA. (f) Z-height = 0.61 nm,  $V_s = -2.5$  V,  $I_t = 10$  pA. STM acquisition temperature: 77 K.



**Fig. S4.** An STM image of a  $2\times1$  defect on rutile TiO<sub>2</sub> after annealing at 600 K. (a) Z-height = 0.59 nm,  $V_s = -1$  V,  $I_t = 10$  pA. STM images of a clean rutile TiO<sub>2</sub> (110) surface; (b) Z-height = 0.16 nm,  $V_s = -1$  V,  $I_t = 10$  pA. (c) Z-height = 0.12 nm,  $V_s = -1$  V,  $I_t = 10$  pA. An STM image of a 3AGNR on a clean rutile TiO<sub>2</sub> (110) surface after annealing at 600 K; (d) Z-height = 0.39 nm,  $V_s = -0.5$  V,  $I_t = 10$  pA. (e) An STM image of DBTP molecules on a clean rutile TiO<sub>2</sub> (110) surface after annealing at 100 °C; Z-height = 0.61 nm,  $V_s = -1$  V,  $I_t = 10$  pA. (f) An STM image of rutile TiO<sub>2</sub> (110) after Fe atoms deposition on this surface; Z-height = 0.89 nm,  $V_s = -1$  V,  $I_t = 10$  pA. (g) An STM image of 3AGNRs on rutile TiO<sub>2</sub> (110) after Fe atoms and DBTP molecules deposition on this surface (sample temperature  $\le 0$  °C) and irradiation by a Xe lamp (filter: 240-395 nm); Z-height = 0.80 nm,  $V_s = -1$  V,  $I_t = 10$  pA. (h) An STM image of PPP wires on a clean rutile TiO<sub>2</sub> (110) surface after annealing at 600 K, in the absence of Fe ad-atoms; Z-height = 0.94 nm,  $V_s = -1$  V,  $I_t = 10$  pA. (i) STM images and the corresponding height profiles of PPP wires on the rutile TiO<sub>2</sub>(110) surface after annealing at 500 K (z-height = 0.31 nm). The wider, brighter feature (width  $\approx 0.6$  nm) corresponds to a flat PPP wire, while the thinner, darker features (width  $\approx 0.4$  nm) correspond to tilted PPP wires. STM acquisition temperature: 77 K.

In Fig. S5, annealing DBTP molecules on  $TiO_2$  surfaces leads to the breaking of C-halogen bonds, which are replaced by C-C coupling with lower binding energies. Furthermore, the presence of oxygen vacancies leads to turning  $Ti^{+4}$  cations into  $Ti^{+3}$  cations, which can be detected by the related shoulder in XPS spectra <sup>6</sup>.



**Fig. S5.** (a) Br 3d, (b) O 1s, and (c) Ti 2p narrow region XP spectra of a rutile TiO<sub>2</sub> (110) surface after deposition of a DBTP monolayer and annealing the monolayer at different temperatures. (d) O 1s and (d) Ti 2p narrow region XP-spectra of a rutile TiO<sub>2</sub> (110) surface after deposition of a DBTP monolayer and sub-monolayer coverage of Fe atoms (coverages of 10% and 20% ML) and annealing at different temperatures. (f) Temperature-programmed TP-XPS contour of the zoomed-in C 1s core level region after deposition of DBTP molecules on the surface without Fe atoms. (g) Br 3d narrow region XP spectra of a rutile TiO<sub>2</sub> (110) surface after cleaning. XPS acquisition temperature: 77 K.

## REFERENCES

(1) Bennett, R. A.; Mulley, J.; Newton, M.; Surman, M. Spectroscopy of ultrathin epitaxial rutile TiO2 (110) films grown on W (100). *J. Chem. Phys.* **2007**, *127* (8).

(2) Fukada, K.; Matsumoto, M.; Takeyasu, K.; Ogura, S.; Fukutani, K. Effects of hydrogen on the electronic state and electric conductivity of the rutile TiO2 (110) surface. *J. Phys. Soc. Jpn.* **2015**, *84* (6), 064716.

(3) Xiong, G.; Shao, R.; Droubay, T. C.; Joly, A. G.; Beck, K. M.; Chambers, S. A.; Hess, W. P. Photoemission electron microscopy of TiO2 anatase films embedded with rutile nanocrystals. *Adv. Funct. Mater.* **2007**, *17* (13), 2133-2138.

(4) Mansfeldova, V.; Zlamalova, M.; Tarabkova, H.; Janda, P.; Vorokhta, M.; Piliai, L.; Kavan, L. Work function of TiO2 (anatase, rutile, and brookite) single crystals: effects of the environment. *J. Phys. Chem. C* **2021**, *125* (3), 1902-1912.

(5) Maheu, C.; Cardenas, L.; Puzenat, E.; Afanasiev, P.; Geantet, C. UPS and UV spectroscopies combined to position the energy levels of TiO 2 anatase and rutile nanopowders. *Phys. Chem. Chem. Phys.* **2018**, *20* (40), 25629-25637.

(6) Scheiber, P.; Fidler, M.; Dulub, O.; Schmid, M.; Diebold, U.; Hou, W.; Aschauer, U.; Selloni, A. (Sub) Surface mobility of oxygen vacancies at the TiO 2 anatase (101) surface. *Phys. Rev. Lett.* **2012**, *109* (13), 136103.