# Coexistence of Room Temperature Magneto-Chiral Dichroism and Magneto-Electric Coupling in a Chiral Nanomagnet

Langit Cahya Adi,<sup>[a]</sup> Maxime Aragon-Alberti,<sup>[a,b]</sup> Geert L.J.A. Rikken,<sup>[a]</sup> Cyrille Train,<sup>[a]</sup> Jérôme Long,<sup>[b],[c]</sup>\* Matteo Atzori<sup>[a],\*</sup>

- [a] Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS, Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, F-38042 Grenoble France.
- [b] Institut Charles Gerhardt Montpellier, UMR 5253, Université de Montpellier, ENSCM, CNRS, Place E. Bataillon, F-34095 Montpellier – France.
- [c] Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris France.

## **Corresponding authors:**

Dr. Matteo Atzori, matteo.atzori@lncmi.cnrs.fr Prof. Jérôme Long, jerome.long@umontpellier.fr

## SUPPLEMENTARY INFORMATION

#### **EXPERIMENTAL SECTION**

**Synthesis.** The samples were prepared and characterized according to the published procedures.<sup>S1</sup> The ligand 6,6'-((1E,1'E)-(((1R,2R)-1,2-diphenylethane-1,2-diyl)bis(azaneylylidene))bis(methane ylylidene))bis(2-methoxyphenol) (R,R-H<sub>2</sub>L) or 6,6'-((1E,1'E)-(((1S,2S)-1,2-diphenylethane-1,2-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-methoxyphenol) (S,S-H<sub>2</sub>L) have been synthesized according to the published procedure.<sup>S1</sup>

The stoichioemetric reaction between R, R-H<sub>2</sub>L (0.1 mmol, 0.046 g), Zn(OAc)·2H<sub>2</sub>O (0.1 mmol, 0.022 g) and Yb(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O (0.1 mmol, 0.045 g) in 10 mL of a methanol/acetonitrile (4:1) mixture, gives a clear yellow solution. Slow vapour diffusion of diethyl-ether into the yellow solution leads to the formation of block-shaped yellow crystals of **1**-(R, R) suitable for MChD measurements. The same procedure was used to obtain **1**-(S, S) starting from S, S-H<sub>2</sub>L.

**Magnetic measurements.** Magnetic measurements as a function of temperature were performed in the 2.0-300 K temperature range with an applied magnetic field of 1.0 T on a polycrystalline sample of **1**-(*R*,*R*) by using a *Quantum Design MPMS3-VSM-SQUID* magnetometer. The microcrystalline sample was finely grounded and pressed in the form of a pellet to avoid microcrystalline orientations. Magnetization measurements as a function of an externally applied magnetic field were collected on the same sample at T = 4.0 K with magnetic fields up to +7 T. Susceptibility data were corrected for the sample holders previously measured in the same conditions and for the diamagnetic contributions as by using Pascal's constant tables.<sup>S2</sup>

**Magneto-Chiral Dichroism Spectroscopy.** Magneto-Chiral Dichroism spectra were recorded with a home-made multichannel MChD spectrometer operating in the visible and near infrared spectral window (400–1600 nm) between 4.0 and 290 K with an alternating magnetic field B up to  $\pm 2$  T. MChD spectra were acquired on single crystals of enantiopure **1**-(R,R) and **1**-(S,S). The samples were mounted on a titanium sample holder over a 0.5 mm hole diameter centred with respect to a 1.0 mm diameter collimated beam. Measurements were performed in the 4.0–290 K range with an alternating magnetic field  $B = \pm 1.0$  T and frequency  $\Omega = 0.04$  Hz. MChD spectra as a function of the magnetic field were recorded at T = 4.0 K for alternating magnetic fields of different amplitudes (0.0-2.0 T). Unpolarized light was provided by a broadband Energetiq – Hamamatsu Laser Driven Light Sources (EQ-99X-FC-S or EQ-77X-FC-S). MChD spectra were obtained at each temperature/magnetic field value by collecting, on average, 30.000 spectra with an integration time of 25 ms. The spectra were collected with a high resolution/high sensitivity Optosky detector equipped with a thermoelectric cooled sensor operating in the 200–1000 nm spectral region with an analogic/digital convertor of 16 bits. Each spectrum was correlated to a

specific magnetic field value by a dual channel digitizer (Picoscope 5000B) acquiring simultaneously triggers from the spectrometer and the magnetic field from a calibrated Hall effect sensor (Lakeshore) placed in proximity of the sample. Data were then post-processed as a synchronous detection with a specific MatLab routine to obtain the MChD spectra.

The MChD dissymmetry factor  $g_{MChD}$  is defined as follows:

$$g_{MChD} = \frac{\Delta A_{MChD}}{AB}$$
(eq. S1)

where  $\Delta A_{\text{MChD}}$  is the differential absorption coefficient between the light absorption collected under a magnetic field parallel and antiparallel oriented with respect to the light wavevector  $\mathbf{k}$ , A is the effective absorption coefficients of the electronic transitions at zero field and  $\mathbf{B}$  is the applied magnetic field intensity.

#### **Theoretical Calculations.**

CASSCF calculations were performed with ORCA 5.0 software<sup>S3,S4</sup> using the crystallographic structures without any structural geometry optimization. Tolerance for energy convergence is fixed at 10<sup>-7</sup> Eh. An active space considering the seven 4f orbitals with 13 electrons CAS (13, 7) for all the doublets (7 roots) was considered. To account for dynamic correlation effects and provide a more accurate picture of the CF splitting, second-order N-Electron perturbation theory (NEVPT2) calculations were performed on top of the CASSCF calculations. The def2 Ahlrichs basis sets were used: DKH-DEF2-TZVP for all atoms, except for Yb for which SARC2-DKH-QZVP basis set was employed. The AUTOAUX feature was employed to automatically generate auxiliary basis sets within the RIJCOSX approximation to speed up the calculations. Finally, the SINGLE\_ANISO program<sup>S4</sup> implemented in ORCA was utilized to obtain detailed information about magnetic relaxation.

#### ADDITIONAL FIGURES AND TABLES



Figure S1. Temperature dependence (2-300 K) of the molar magnetic susceptibility times the temperature ( $\chi T$ ) under an applied static magnetic field B = 1.0 T for a finely grounded microcrystalline sample of 1-(R,R). Inset shows the magnetization curve as a function of the magnetic field intensity at T = 4.0 K. The solid lines account for the calculated values from theoretical calculations downscaled by about 10% with respect to the experimental data.



**Figure S2.** Thermal variation of the absorption coefficient for a single crystal of 1-(R,R) ( $k \perp (0, -1, 1)$ ) in the 900-1000 nm range.



Figure S3. Temperature dependence of  $\Delta A_{\text{MChD}}$  (integrated absolute area of the overall  ${}^{2}\text{F}_{7/2} \leftarrow {}^{2}\text{F}_{5/2}$  multiplet  $\lambda = 900\text{-}1000$  nm) compared to the magnetization data recorded on a finely grounded microcrystalline sample of **1**-(*R*,*R*) under the same applied magnetic field *B* = 1.0 T.

**Table S1.** *Ab initio* calculated energies, *g*-tensor main values of the ground doublet and the n<sup>th</sup> KD doublet for the ground multiplet J = 7/2 obtained for **Yb1** of **1-**(*R*,*R*).

| CASSCF |                            |                |            |            |                                                      |  |  |
|--------|----------------------------|----------------|------------|------------|------------------------------------------------------|--|--|
| KD     | Energy (cm <sup>-1</sup> ) | g <sub>x</sub> | <b>g</b> y | $g_z$      | Wavefunction (only components with > 20 % are given) |  |  |
| 0      | 0                          | 0.48911927     | 0.80066600 | 7.56304043 | 94.6.% ±7/2>                                         |  |  |
| 1      | 197                        | 4.54825284     | 3.52712890 | 1.19587360 | 72.9% ±5/2>                                          |  |  |
| 2      | 437                        | 0.98668224     | 1.27830005 | 4.30320799 | 46.0% ±3/2>;28.9% ±1/2>;22.2% ±5/2>                  |  |  |
| 3      | 575                        | 0.41755301     | 0.55279656 | 7.45859501 | 61.4% ±1/2>; 34.1% ±3/2>                             |  |  |
| NEVPT2 |                            |                |            |            |                                                      |  |  |
| KD     | Energy (cm <sup>-1</sup> ) | g <sub>x</sub> | $g_{y}$    | $g_z$      | Wavefunction (only components with > 20 % are given) |  |  |
| 0      | 0.00                       | 0.55125575     | 0.90915232 | 7.51638665 | 94.0.% ±7/2>                                         |  |  |
| 1      | 224                        | 4.76473305     | 2.99164483 | 1.02756954 | 76.9% ±5/2>                                          |  |  |
| 2      | 558                        | 1.48328089     | 1.60992603 | 4.05250395 | 51.9% ±3/2>;26.7% ±1/2>                              |  |  |
| 3      | 713                        | 0.31826735     | 0.43113190 | 7.49285237 | 64.4% ±1/2>; 31.4% ±3/2>                             |  |  |

| CASSCF |                            |                                     |  |  |  |  |  |
|--------|----------------------------|-------------------------------------|--|--|--|--|--|
| KD     | Energy (cm <sup>-1</sup> ) | Energy rescaled (cm <sup>-1</sup> ) |  |  |  |  |  |
| 0'     | 10143                      | 0                                   |  |  |  |  |  |
| 1'     | 10381                      | 238                                 |  |  |  |  |  |
| 2'     | 10636                      | 493                                 |  |  |  |  |  |
|        | NEVPT2                     |                                     |  |  |  |  |  |
| KD     | Energy (cm <sup>-1</sup> ) | Energy rescaled (cm <sup>-1</sup> ) |  |  |  |  |  |
| 0'     | 10156                      | 0                                   |  |  |  |  |  |
| 1'     | 10452                      | 296                                 |  |  |  |  |  |
| 2'     | 10777                      | 621                                 |  |  |  |  |  |

**Table S2.** Ab initio calculated energies of the ground doublet and the n<sup>th</sup> KD doublet for the multiplet J = 5/2 obtained for Yb1 of 1-(*R*,*R*).

**Table S3.** *Ab initio* calculated energies, *g*-tensor main values of the ground doublet and the n<sup>th</sup> KD doublet for the ground multiplet J = 7/2 obtained for **Yb2** of **1-(***S***,***S***)**.

| CASSCF |                            |                       |            |            |                                                      |  |  |
|--------|----------------------------|-----------------------|------------|------------|------------------------------------------------------|--|--|
| KD     | Energy (cm <sup>-1</sup> ) | <i>g</i> <sub>x</sub> | <b>g</b> y | $g_z$      | Wavefunction (only components with > 20 % are given) |  |  |
| 0      | 0                          | 0.39260608            | 0.75718215 | 7.57227107 | 94.4.%   ±7/2>                                       |  |  |
| 1      | 198                        | 4.52627306            | 3.64928336 | 1.07890249 | 72.8%   ±5/2>                                        |  |  |
| 2      | 420                        | 0.67414124            | 1.25857337 | 4.48299877 | 45.4% ±3/2>;29.4% ±1/2>;22.4% ±5/2>                  |  |  |
| 3      | 560                        | 0.51891643            | 0.62553761 | 7.42920966 | 60.5%   ±1/2>; 34.6%   ±3/2>                         |  |  |
| NEVPT2 |                            |                       |            |            |                                                      |  |  |
| KD     | Energy (cm <sup>-1</sup> ) | gx                    | <b>g</b> y | $g_z$      | Wavefunction (only components with > 20 % are given) |  |  |
| 0      | 0                          | 0.39571912            | 0.76796636 | 7.56438092 | 94.1.% ±7/2>                                         |  |  |
| 1      | 231                        | 4.78619781            | 3.04355095 | 0.91611097 | 78.7%   ±5/2>                                        |  |  |
| 2      | 542                        | 1.12311714            | 1.88266121 | 4.24414673 | 50.9% ±3/2>;29.0% ±1/2>                              |  |  |
| 3      | 701                        | 0.43447747            | 0.49925249 | 7.46083346 | 62.6% ±1/2>; 33.0% ±3/2>                             |  |  |

**Table S4.** Ab initio calculated energies of the ground doublet and the n<sup>th</sup> KD doublet for the multiplet J = 5/2 obtained for Yb2 of 1-(S,S).

| CASSCF |                            |                                     |  |  |  |  |  |
|--------|----------------------------|-------------------------------------|--|--|--|--|--|
| KD     | Energy (cm <sup>-1</sup> ) | Energy rescaled (cm <sup>-1</sup> ) |  |  |  |  |  |
| 0'     | 10144                      | 0                                   |  |  |  |  |  |
| 1'     | 10375                      | 228                                 |  |  |  |  |  |
| 2'     | 10621                      | 477                                 |  |  |  |  |  |
| NEVPT2 |                            |                                     |  |  |  |  |  |
| KD     | Energy (cm <sup>-1</sup> ) |                                     |  |  |  |  |  |
| 0'     | 10157                      | 0                                   |  |  |  |  |  |
| 1'     | 10449                      | 291                                 |  |  |  |  |  |
| 2'     | 10764                      | 607                                 |  |  |  |  |  |



**Figure S4.** Orientation of the magnetic easy-axis (green arrow) related to the ground Kramers doublet (0) for the two crystallographically independent Yb<sup>III</sup> ions.

### **SUPPORTING REFERENCES**

- J. Long, M. S. Ivanov, V. A. Khomchenko, E. Mamontova, J.-M. Thibaud, J. Rouquette, M. Beaudhuin, D. Granier, R. A. S. Ferreira, L. D. Carlos, B. Donnadieu, M. S. C. Henriques, J. A. Paixão, Y. Guari, J. Larionova, *Science* 2020, *367*, 671–676.
- S2. G. A. Bain, J. F. Berry, J. Chem. Educ. 2008, 85, 532.
- S3. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2, 73-78.
- S4. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2022, 12, e1606.
- S5. L. Ungur and L. F. Chibotaru, SINGLE ANISO Program 2006-2013.