Elaborated Built-In Electric Field in Mn/C₆₀ heterojunction Promotes Electrocatalytic Nitrogen Reduction to Ammonia

Hao Xue^{ab}, Kaiheng Zhao^c, Denglei Gao^d, Fangying Duan^e, Zijian Gao^f, Wenjia Yu^g,

Sha Li^{*h}, Menglei Yuan^{*be}, and Zongjing Lu^{*a}

^aInstitute of Photochemistry and Photofunctional Materials, University of Shanghai for Science and Technology, Shanghai 200093, China. E-mail: zongjinglu@usst.edu.cn ^bQueen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710129, China.

^cKey Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100190, China. ^dSchool of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong 257061, China.

^eState Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China. E-mail: mlyuan@nwpu.edu.cn

^fCAS Key Laboratory of Green Process Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

^gYantai Research Institute of Harbin Engineering University, Yantai, 264006, China. ^hChemistry and Chemical Engineering Guangdong Laboratory, Shantou 515021, China. E-mail: lisha@ccelab.com.cn

*Corresponding Author(s)

SI. Experimental section

1. Materials

Buckminsterfullerene [C₆₀, 99.9%], manganese carbonyl [Mn₂(CO)₁₀, 98%], di-sodium hydrogen phosphate dihydrate [Na₂HPO₄·2H₂O, 99%], acetone [CH₃COCH₃, 99.9%], salicylic acid [C₇H₆O₃, \geq 99.0%], sodium citrate [C₆H₃Na₃O₇, 98%], sodium hypochlorite (NaClO), sodium nitroferricyanide dihydrate [C₅FeN₆Na₂O • 2H₂O, 99.0%], sodium hydroxide [NaOH, 98-100.5%], ammonium chloride [NH₄Cl, 99.5%] and Nafion membrane 211 were purchased from Sigma-Aldrich Chemical Reagent Co., Ltd. Ethanol (99.5%) were purchased from Beijing Chemical Crop. The water was purified by a Millipore system. All these reagents were used without any further purification.

2. Preparation of Mn/C₆₀

 $Mn_2(CO)_{10}$ (20 mg) and C_{60} (80 mg) were put into the agate mortar and ground for 30 minutes, followed by heating to 300 °C at a heating rate of 5 °C min⁻¹ under argon atmosphere. After annealing at 300 °C for 1 h, the Mn/C₆₀ sample was obtained through natural cooling to room temperature.

3. Preparation of Mn

Mn NPs were synthesized to demonstrate the critical role of C_{60} in the electrocatalytic process. $Mn_2(CO)_{10}$ (40 mg) was mingled evenly and put into porcelain boat for heating treatment. Subsequently, after the same annealing and post-treatment process as in the synthesis of Mn/C_{60} , the metal Mn nanoparticles were successfully synthesized.

4. Preparation of C₆₀

The synthetic procedures for C_{60} is similar to those for Mn, C_{60} (40 mg) was mingled evenly and put into porcelain boat for heating treatment. Subsequently, proceeding the same annealing and post-treatment process as in the synthesis of Mn/C₆₀.

5. Characterization

X-ray diffraction (XRD, X'PERT PRO MPD diffractometer, Cu K α radiation, λ =0.15418 nm, scanned range of 2-90°) was used to identify the crystal structure of all prepared catalysts. Scanning electron microscopy (SEM, JSM-7800F Prime) and transmission electron microscopy (TEM, JEM-2100F) were utilized to investigate the morphology of all samples. X-ray photoelectron spectroscopy (XPS) data were collected by using Krato, AXIS-HS monochromatized Al K α cathode source of 75-150 W under ultrahigh vacuum. Moreover, the UV-visible adsorption spectra were recorded on a spectrophotometer (UV-2550). H NMR spectra were collected on a superconducting-magnet NMR spectrometer (Bruker AVANCE III HD 700 MHz). Besides, dimethyl sulphoxide was utilized as an internal standard to calibrate the chemical shifts in the spectra.

6. Electrochemical measurements

In order to eliminate any ammonia and other contaminants, all components of the electrochemical cell were firstly soaked in 0.05 M H₂SO₄ solution for 24 h and then washed copiously with fresh ultrapure water before NRR tests. Besides, all labware (needles, vials, pipet tips, containers, etc.) utilized in this work were also treated by 0.1 M H₂SO₄ solution and water. All electrochemical characterizations were performed using a CHI 660E workstation coupled with a three-electrode system in a single-

chamber electrolytic cell. Carbon cloth utilized in this work was purchased from CeTech (W1S1009 type) and treated with the mixture of H₂SO₄:H₂O₂ (1:3 vol.) for 12 h to remove surface impurities. To avoid excessive oxidation by oxygen and contamination with ambient ammonia or other nitrogen-containing species in air, electrodes were used either immediately after preparation or kept in vacuum before being used in electrochemical experiments. The prepared catalyst loaded on a piece of pretreated carbon cloth $(1 \times 1 \text{ cm}^2)$ was used as the working electrode, a graphite rod and Ag/AgCl (saturated KCl electrolyte) were employed as counter electrode and reference electrode, respectively. Potential without iR-compensated were converted to RHE scale via the following equation: E (vs. RHE) = E (vs. Ag/AgCl) + 0.7736. The catalyst ink for working electrode was prepared by dispersing 2 mg of catalyst in a mixed solution of 15 µL Nafion (0.5 wt%), 250 µL acetone and 235 µL water followed by sonication for 30 minutes. Mass loading of 0.3 mg cm⁻² was used for electrochemical study. All experiments were carried out at room temperature (25°C). To remove the impurities in the inlet gas, such as NH₃ and NO_X, the prepurification of high-purity N₂ (purity 99.999%) and Ar (purity 99.99%) by passing through a saturator filled with 0.05 M NaOH and a saturator filled with 0.05 M H₂SO₄ solution to remove any possible contaminants. Before carrying out all the electrochemical characterizations, the 0.08 M Na₂HPO₄ electrolyte solution was purged with N₂ for 30 minutes. Cyclic voltammetry (CV) test was carried out on at a scan rate of 50 mV s⁻¹ ranging from -1.2264-0.7736 V (vs. RHE). Linear sweep voltammetry (LSV) was also conducted at a scan rate of 10 mV s⁻¹. Chronoamperometric test were then conducted at different potentials and pure

N₂ was continuously fed into the cathodic cell during the experiments.

7. Calculation of Faradaic efficiency (FE) and NH₃ formation rate

The FE for NRR was defined as the amount of electric charge used for producing NH₃ divided the total charge passed through the electrodes during the electrolysis. Assuming three electrons were needed to produce one NH₃ molecule, the FE was calculated according to the following equation:

$$FE=3 \times 0.318 \times F \times C_{NH4Cl} \times V / (17 \times Q)$$

The rate of formation of NH₃ was calculated using the following equation:

NH₃ yield rate =
$$0.318 \times C_{\text{NH4Cl}} \times \text{V} / (\text{m}_{\text{cat}} \times \text{t})$$

Where F is Faraday constant (96485 C mol⁻¹), C_{NH4C1} is the measured mass concentration of NH₄Cl; V is the volume of the cathodic reaction electrolyte; Q is the quantity of applied charge/electricity; t is the time for which the potential was applied; m_{cat} is the mass of catalyst loaded at the carbon cloth.

8. DFT calculations

The first-principles spin-polarized calculations were carried out using the Vienna Ab initio Simulation Package (VASP). ^{1, 2} The exchange-correlation energy was modeled with the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA). ^{3, 4} The interactions between ions and electrons were accurately described using the projector augmented wave (PAW) method. ⁵ A plane-wave basis set with a cutoff energy of 500 eV was employed throughout the calculations. Convergence criteria for energy and force were set to 10^{-5} eV and 0.01 eV/Å, respectively. For structural relaxation, the Brillouin zone was sampled using a $3 \times 3 \times 1$ grid based on the Monkhorst-Pack scheme. Long-range van der Waals (vdW) interactions were accounted for with Grimme's DFT-D3 dispersion correction method. A vacuum slab of over 15 Å was applied along the z-direction. The change in free

energy (ΔG) for each hydrogenation step was computed using the computational hydrogen electrode (CHE) model, ⁷ where ΔG for each surface was defined by the equation: $\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S + \Delta G_U + \Delta G_{pH}$. Here, ΔE was derived from DFT calculations, ΔE_{ZPE} represents the zero-point energy (ZPE) corrections, and ΔS accounts for entropy corrections. The temperature (*T*) was set to 298.15 K, and the pressure was set to 0.1 MPa. ΔG_U represents the contribution of the applied potential, with U being the applied electrode potential. ΔG_{pH} is the free energy correction for the H⁺ concentration, defined as $\Delta G_{pH} = k_{\rm B}T \times \ln 10 \times \rm pH$, where kB is the Boltzmann constant and the pH value is zero. The limiting potential ($U_{\rm L}$) for the overall elementary step was calculated by determining the potential-determining step (PDS), which exhibits the most positive Gibbs free energy change ($\Delta G_{\rm max}$), using the formula: $U_{\rm L} = -\Delta G_{\rm max}/e$.

Figure S1. Average size distribution measured in SEM for 101 particles utilizing *Nano Measurer 1.2* software.

Slab	Work function (eV)
C_{60}	5.52
Mn(101)	3.75
C ₆₀ /Mn(101)	3.23

Figure S2. SEM image of synthesised (a-b) Mn/C_{60} and (c-d) C_{60} .

Table S1. Work function of Mn (101), C_{60} and C_{60}/Mn (101).

Figure S3. (a-c)The high resolution transmission electron microscopy (HRTEM) image of synthesised C_{60} and (d-f) corresponding EDS mapping images of C_{60} .

Figure S4. (a) UV-vis curves and (b) concentration-absorbance of NH₄Cl solution with a series of standard concentration (0-1 μ g mL⁻¹) in 0.08 M Na₂HPO₄. The absorbance at 655 nm was measured by UV-vis spectrophotometer. The standard curve showed good linear relation of absorbance with NH₄Cl concentration (y=0.12511x+0.02598, R²=0.9998).

Figure S5. XPS survey spectrum of C₆₀.

Figure S6. High-resolution XPS spectra of O 1s for C₆₀.

Figure S7. High-resolution XPS spectra of C 1s for C₆₀.

Figure S8. Adsorption configurations of different species during the NRR on Mn/C_{60} .

Figure S9. Adsorption configurations of different species during $N_2 \rightarrow *N_2H$ on C_{60} .

Figure S10. Adsorption configurations of different species during the NRR on Mn. Table S2. Calculated zero-point energy (E_{ZPE}) and *TS* of different adsorption species,

where ' denotes the adsorption site, and 296.13 K.	where	*	denotes	the	adsor	ption	site,	and 298.15 K.
--	-------	---	---------	-----	-------	-------	-------	---------------

Adsorption species	$E_{\rm ZPE}~({\rm eV})$	TS (eV)
*N≡*N	0.19	0.14
*N≡N	0.21	0.13
*N-*NH	0.47	0.19
NH- [] NH	0.82	0.19
*NH2-*N	0.83	0.12
*NH-*NH ₂	1.14	0.18
*NH ₂ +*NH ₂	1.25	0.25
*NH ₂	0.63	0.14
*NH3	1.02	0.16
*H	0.15	0.01

Table S3. Energies of N₂, H₂, NH₃ adopted in this work where E_{DFT} stands for the energy obtained from DFT calculations. For the gas molecules, their E_{ZPE} and *S* values (gas phase H₂, N₂, NH₃ at T = 298.15 K, P = 1 bar) are from the NIST database. (https://doi.org/10.18434/T4D303)

Species	$E_{\rm DFT}~({\rm eV})$	$E_{\rm ZPE}~({\rm eV})$	TS (eV)	$G\left(\mathrm{eV}\right)$
H_2	-6.77	0.27	0.40	-6.90
N_2	-16.63	0.15	0.60	-17.08
NH ₃	-19.54	0.91	0.60	-19.23

Table S4. Comparison of the electrocatalytic activity of Mn/C_{60} to produce NH_3 through NRR with previously reported NRR electrocatalysts.

Catalyst	NH ₃ yield rate (μ g h ⁻¹ mg ⁻¹)	Faradaic efficiency (%)	Reference
Mn/C ₆₀	14.52	42.18	This work
Pd/C	4.5	8.2	8
V_2O_3/C	12.3	7.28	9
C-TiO ₂	16.22	1.84	10
Mn ₃ O ₄ Nanocube	11.6	3	11
F-SnO ₂ /CC	19.3	8.6	12
SnO ₂ /CC	4.03	2.17	13
NPC	27.2	1.42	14
Nb ₂ O ₅ nanofiber	43.6	9.26	15
Au-Bi ₂ Te ₃ Nanosheets	32.73	20.39	16
WO _x /NPC	46.8	10.2	17
PC/Sb/SbPO ₄	23	34	18

References

- G. Kresse and J. Furthmüller, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1996, 54, 11169-11186.
- 2. G. Kresse and J. Furthmuller, *Comput. Mater. Sci.*, 1996, 6, 15-50.
- J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, *Phys. Rev. B.*, 1992, 46, 6671.
- 4. J. P. Perdew and Y. Wang, Phys. Rev. B, *Condens. Matter.*, 1992, **45**, 13244-13249.
- 5. G. Kresse and D. Joubert, *Phys. Rev. B.*, 1999, **59**, 1758-1775.
- S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jonsson, J. Phys. Chem. B, 2004, 108, 17886-17892.
- J. Wang, L. Yu, L. Hu, G. Chen, H. Xin and X. Feng, *Nat. Commun.*, 2018, 9, 1795.
- R. Zhang, J. Han, B. Zheng, X. Shi, A. M. Asiri and X. Sun, *Inorg. Chem. Front.*, 2019, 6, 391-395.
- K. Jia, Y. Wang, Q. Pan, B. Zhong, Y. Luo, G. Cui, X. Guo and X. Sun, Nanoscale Adv., 2019, 1, 961-964.
- X. Wu, L. Xia, Y. Wang, W. Lu, Q. Liu, X. Shi and X. Sun, *Small*, 2018, 14, 1803111.
- K. Chu, Y.-p. Liu, Y.-b. Li, H. Zhang and Y. Tian, J. Mater. Chem. A, 2019, 7, 4389-4394.
- L. Zhang, X. Ren, Y. Luo, X. Shi, A. M. Asiri, T. Li and X. Sun, *Chem. Commun.*, 2018, 54, 12966-12969.
- Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, ACS Catal., 2018, 8, 1186-1191.
- J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao, Y. Xu and X. Sun, *Nano Energy*, 2018, **52**, 264-270.

- M. Liu, S. Yin, T. Ren, Y. Xu, Z. Wang, X. Li, L. Wang and H. Wang, *ACS Appl. Mater. Interfaces*, 2021, **13**, 47458-47464.
- Z. Lu, H. Wang, Y. Tao, S. Zhu, W. Hao, X. Liu, Y. Min and J. Fan, *Nanoscale*, 2023, 15, 14847-14857.
- X. Liu, H. Jang, P. Li, J. Wang, Q. Qin, M. G. Kim, G. Li and J. Cho, *Angew. Chem., Int. Ed.*, 2019, 58, 13329-13334.