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1 The twisted bilayer graphene reconstruction regime

When two graphene layers are stacked to form a twisted bilayer graphene (TBG), their lattices

create a new periodic array, called moiré pattern (Fig. S1a), introducing twist-angle-dependent features in

the electronic, optical, and mechanical properties [1]. At twist angles below the so called “magic angle”,

i. e., 1.1º, the system undergoes a self-organized lattice reconstruction which we describe further in this

section. In this regime, the structure of the TBG is governed by the interplay between interlayer van der

Waals interaction, which arises from stacking two layers, and the in-plane strain field, which arises from

the atomic mismatch between these layers [2]. As a result, the interaction between the graphene layers lead

to atomic relaxations that minimize the total energy by increasing the Bernal (AB and BA) stacking areas
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while decreasing the AA-stacking regions [3]. Therefore, the resulting reconstructed lattice is composed of

periodic triangular areas of alternating Bernal stacking domains, separated by shear soliton regions, with

AA-stacked regions at the vertices of the triangles (Fig. S1b), which is the minimum energy state.

Fig. S 1: For θ greater than 1.1º, the TBG structure reveals Moiré patterns. Below 1.1º, the TBG unveils

the reconstruction regime.

2 Nonlocal optical conductivity for twisted bilayer graphene

As stated in the main paper, the high degree of confinement factors implies that nonlocal effects

can play an important role in the plasmon dispersion relation [4]. From the Kubo formula, a Drude-type

frequency dependence for the intraband contribution to the optical conductivity of TBG was already been

obtained [5]. Here, due to the talc substrate, the TBG sample will be doped [6] and we can expect, due

to the Pauli blocking, for the vanishing of the interband component of the optical conductivity. A simple

model that corresponds to the Drude conductivity in the limit of vanishing quantum corrections but takes

in account nonlocal contributions is the hydrodynamical model [7]. Here, we will follow Ref. [8], where the

hydrodynamic model was derived for monolayer graphene starting from the Boltzmann formalism, but now

considering the TBG electrons. We start from the Drude mass defined as mD ≡ h̄kF /vF , with kF being

Fermi’s momentum and vF the Fermi velocity. The Drude mass correctly captures the light-matter coupling

in this semiclassical approximation. The system is characterized by an electronic density n and velocity

field v. We consider an impinging monochromatic electron field E with frequency ω and wavevector k.
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Starting from Euler’s equation for the graphene electrons [8]:

mDn
∂v

∂t
+mDnv ·∇v = gmDn−∇P, (1)

with g being the external forces and P the internal quantum pressure of the electron gas. Considering only

the action of an external electric field, we have g = −eE.

In the linear regime the term quadratic in v does not contribute, and considering the presence of

a scattering rate γ, we make ∂t → ∂t + γ, thus:

mDn

(
∂

∂t
+ γ

)
v = −enE−∇P. (2)

Considering that the pressure P depends only on the density n, we can expand P as:

P ≈ P0 +
δP

δn

∣∣∣∣
n=n0

δn, (3)

with δn ≡ n− n0, n0 being the equilibrium density, and δn being the density fluctuation. Now we consider

that the external electric field, the velocity field , and the density fluctuations have the dependence of eik·r,

with r being the TBG in-plane coordinates and q the in-plane wavenumber, i.e., we have:

E = E1e
ik·r−iωt, (4a)

n = n0 + n1e
ik·r−iωt, (4b)

v = v1e
ik·r−iωt, (4c)

where E1, n0, n1,v1 are constants in the r, t variables. In this equation we considered only the in-plane

component of the electric field.

Substituting Eq. (3) in (2) and retaining only the linear terms, we have:

−imDn0

(
ω +

1

τ

)
v = −en0E1 − iBkn, (5)

where we defined B ≡ δP
δn

∣∣
n=n0

.

The relation between n and v can be obtained from the continuity equation:

∇ · (nv) + ∂n

∂t
= 0, (6)

which results in the linear response:

n0k · v1 − ωn1 = 0. (7)

From Eqs. (5) and (7), we obtain the velocity field as:

v =
−en0

D

mDn0(−iω + γ) + iBk2y/ω −iBkxky/ω

−iBkxk − y/ω mDn0(−iω + γ) + iBk2x/ω

E0, (8)
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with

D = −m2
Dn2

0 (ω + iγ)
2
+mDn0(ω + iγ)Bk2/ω. (9)

We now define β2 ≡ B/(mn0), with β having dimension of speed. The linear current is given by

J = −en0v, which results in the nonlocal optical conductivity:

σ(k, ω) =
ie2n0

mD(ω + iγ)

1

ω(ω + iγ)− β2k2

(ω + iγ)ω − β2k2y β2kxky

β2kxky (ω + iγ)ω − β2k2x

 . (10)

The term βk that appears in the above expression corresponds to the diffusion of electrons due to

the quantum pressure, and it is the origin of the nonlocal optical response. In the limit β → 0, the optical

conductivity (12) becomes the Drude conductivity:

σD(ω) =
ie2n0

mD(ω + iγ)

1 0

0 1

 , (11)

substituting the Drude mass mD = h̄kF /vF and the electronic density n0 = 2k2F /π, that takes into account

spin, valley, and layer degrees of freedom, we obtain:

σD(ω) =
2πe2

h̄(ω + iγ)

1 0

0 1

 , (12)

that corresponds to twice the monolayer graphene intraband optical conductivity [9], as we are taking into

account the two layers of TBG.

3 Transfer Matrix Method (TMM)

We consider a graphene layer deposited on a talc flake over a SiO2 substrate. The dielectric

function of the talc [10] is given by:

ϵtalc(ω) =


ϵ∥(ω) 0 0

0 ϵ∥(ω) 0

0 0 ϵ⊥(ω)

 , (13)

with:

ϵ∥(ω) = ϵ∥,∞

(
1 +

ω2
LO,∥ − ω2

TO,∥

ω2
TO,∥ − ω2 − iωγ∥

)
, (14)

ϵ⊥(ω) = ϵ⊥,∞

1 +

2∑
j=1

gn
ω2
LO,j − ω2

TO,j

ω2
TO,j − ω2 − iωγj

 , (15)
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with ε∥,∞ = 2.5, ωTO,∥ = 1011 cm−1, ωLO,∥ = 1041 cm−1, γ∥ = 15 cm−1 ωTO,1 = 948 cm−1, ωLO,1 = 1002

cm−1, ω1 = 20 cm−1, ωTO,2 = 671 cm−1, ωLO,2 = 685 cm−1, ω2 = 5 cm−1, g1 = 1, g2 = 2.4.

The SiO2 infrared dielectric function is given by [11]:

ϵSiO2
= ϵ∞

3∑
n=1

fnω
2
TO,n

ω2
TO,n − ω2

, (16)

with ϵ∞ = 2.4, ωTO = [448, 791.7, 1128.1] cm−1, and fn = [0.7514, 0.1503, 0.6011].

We consider a transverse magnetic (TM) polarization, and that the heterostructure stacking is in

the z direction and that the in-plane propagation direction is in the x direction. Considering that the H

field is piecewise continuous along the z direction and point in the y direction, we have:

Hy = eiqx−iωt ×


H+

1 eik1z +H−
1 e−ik1z, if z < 0,

H+
2 eik2z +H−

2 e−ik2z, if 0 < z < h,

H+
3 eik3(z−h) +H−

3 e−ik3(z−h), if z > h,

(17)

where h is the talc thickness and:

k1 =
√
k20 − q2, (18)

k2 =

√
ϵ∥k

2
0 −

ϵ∥

ϵ⊥
q2, (19)

k3 =
√

ϵSiO2
k20 − q2. (20)

The electric displacement field can be obtained from ∇×H = −iωD and its x and z components are:

Dx =
1

ω
eiqx−iωt ×


k1H

+
1 eik1z − k1H

−
1 e−ik1z, if z < 0,

k2H
+
2 eik2z − k2H

−
2 e−ik2z, if 0 < z < h,

k3H
+
3 eik3(z−h) − k3H

−
3 e−ik3(z−h), if z > h,

(21)

Dz = − q

ω
eiqx−iωt ×


H+

1 eik1z +H−
1 e−ik1z, if z < 0,

H+
2 eik2z +H−

2 e−ik2z, if 0 < z < h,

H+
3 eik3(z−h) +H−

3 e−ik3(z−h), if z > h,

(22)

Therefore, the electric field is given by:

Ex =
1

ϵ0ω
eiqx−iωt ×


k1H

+
1 eik1z − k1H

−
1 e−ik1z, if z < 0,

k2

ϵ∥
H+

2 eik2z − k2

ϵ∥
H−

2 e−ik2z, if 0 < z < h,

k3

ϵSiO2
H+

3 eik3(z−h) − k3

ϵSiO2
H−

3 e−ik3(z−h), if z > h,

(23)
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Ez = − q

ϵ0ω
eiqx−iωt ×


H+

1 eik1z +H−
1 e−ik1z, if z < 0,

1
ϵ⊥

H+
2 eik2z + 1

ϵ⊥
H−

2 e−ik2z, if 0 < z < h,

1
ϵSiO2

H+
3 eik3(z−h) +H−

3
1

ϵSiO2
e−ik3(z−h), if z > h.

(24)

From the boundary conditions we have for the air-graphene-talc interface [9]:

Hy|z=0− −Hy|z=0+ = σxxEx|z=0, (25)

and the continuity of the tangent electric field

Ex|z=0− − Ex|z=0+ = 0, (26)

which, after substituting Eqs. (17) and (23) in Eqs. (25) and (26), results in:

H+
1 +H−

1 −H+
2 −H−

2 = σxx
k1
ε0ω

(
H+

1 −H−
1

)
, (27)

k1
(
H+

1 −H−
1

)
− k2

ϵ∥

(
H+

2 −H−
2

)
= 0, (28)

which results in:

H+
2 =

1

2

(
1 +

k1ε∥

k2
− σxx

k1
ε0ω

)
H+

1 +
1

2

(
1−

ε∥k1

k2
+ σxx

k1
ε0ω

)
H−

1 , (29)

H−
2 =

1

2

(
1−

ϵ∥k1

k2
− σxx

k1
ε0ω

)
H+

1 +
1

2

(
1 +

ϵ∥k1

k2
+ σxx

k1
ε0ω

)
H−

1 , (30)

and we can put in the matrix formulation as:H+
2

H−
2

 =

 1
2

(
1 +

k1ε∥
k2

− σxx
k1

ε0ω

)
1
2

(
1− ε∥k1

k2
+ σxx

k1

ε0ω

)
1
2

(
1− ϵ∥k1

k2
− σxx

k1

ε0ω

)
1
2

(
1 +

ϵ∥k1

k2
+ σxx

k1

ε0ω

)
H+

1

H−
1

 . (31)

For the talc-SiO2 interface, we have, from the boundary conditions:

Hy|z=h− −Hy|z=h+ = 0, (32a)

Ex|z=h− − Ex|z=h+ = 0, (32b)

which results in:

H+
2 eik2h +H−

2 e−ik2h −H+
3 −H−

3 = 0, (33)

k2
ϵ∥

(
H+

2 eik2h −H−
2 e−ik2h

)
− k3

ϵSiO2

(
H+

3 −H−
3

)
= 0, (34)

which results in: H+
3

H−
3

 =

 (1 + ϵSiO2
k2

k3ϵ∥

)
eik2h

(
1− ϵSiO2

k2

k3ϵ∥

)
e−ik2h(

1− ϵSiO2
k2

k3ϵ∥

)
e+ik2h

(
1 +

ϵSiO2k2

k3ϵ∥

)
e−ik2h

H+
2

H−
2

 . (35)

From the transfer matrix of Eqs. (31) and (35) we obtain the total transfer matrix M = [mij ], and

using that the Fresnel reflection coefficient is given by rp = −m21/m22, we can obtain the Loss function as

L = −Im[rp], whose results are presented in the next section.

6



4 Polaritonic spectra: Loss function

In Fig. S2, we show the polariton spectrum obtained from the Loss function as defined in the

previous section for the graphene-talc-SiO2 heterostructure. The blue dots are the experimental data. In

Fig. S2a, we considered the hydrodynamic model for graphene with fitted β and EF parameters, such as

β = 3.85 × 106 m/s and EF = 0.4 eV. The obtained result reveals a good agreement with the experimental

data further confirming that we can safely neglect interband contributions to the optical conductivity, as

the Pauli blocking inhibits interband transitions with frequencies below 2EF /h̄ =≈ 6400 cm−1. In Fig. S2b,

we considered the Drude conductivity for graphene, i.e., making β = 0. In this case, the graphene plasmon

branch appears in the 300-400 cm−1 range and does not hybridize with the talc phonons. In Fig. S2c, we

also used the Drude model, but now fitting the Fermi energy, obtaining a very high value of EF = 4.0 eV.

In this case, the agreement is poorer, where the data above the phonon line at 948 cm−1 does not fit the

plasmon dispersion.

Fig. S 2: Loss function for the TBG-talc-SiO2 heterostructure considering the TMM approach for different

models of TBG conductivity. For each panel we considered the Fermi level at the graphene as a fitting

parameter. The blue dots are the experimental data, as explained in the main paper. In panel a) we

considered the hydrodynamic model for TBG graphene, and EF and β as fitting parameters, which revealed

the best agreement with our experimental data. In panel b) we used the same value of EF of panel a), but

for the Drude conductivity. In panel c) we show the best fit obtained using the Drude conductivity. The

white dashed line marks the beginning of the first talc’s Reststrahlen band [10].

7



We can conclude that the hydrodynamic model, which takes into account nonlocal contributions,

can explain the experimental results, while it is impossible to obtain fits for the experimental data only

considering the Drude conductivity of TBG. This work motivates further experimental and theoretical

investigation of the microscopic description of the quantum pressure for TBG electrons.
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