Supporting Information for

Strain-tunable optoelectronic and photocatalytic properties of 2D GaN/MoSi₂P₄ heterobilayers: Potential optoelectronic/photocatalytic materials

Huabing Shu^{*a}, Feifan Wang^b, Kai Ren^{*c}, Jiyuan Guo^a

^a School of Science, Jiangsu University of Science and Technology, Zhenjiang 212001, China

^b Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

^c School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China

Fig. S1 Top (side) views and band structures of isolated monolayers: (a) GaN and (b) MoSi₂P₄. The band structures are calculated by the PBE method.

Fig. S2 Quasi-particle band structures of GaN monolayer and $MoSi_2P_4$ monolayer at

 G_0W_0 level.

Fig. S3 Phonon spectra of isolated GaN and MoSi₂P₄ monolayers.

Fig. S4 Differential charge density with an isosurface value of $1.0 \times 10^{-3} \text{ e} \cdot \text{Å}^{-3}$ along the *c* direction for the AA5 GaN/MoSi₂P₄ heterosbilayer. The yellow and cyan suggest the gain and loss of electrons, respectively.

Fig. S5 Calculated band structures of the AA5 $GaN/MoSi_2P_4$ heterobilayer with the spin-orbit coupling effects at the PBE level.

Fig. S6 Phonon spectrum of AA5 $GaN/MoSi_2P_4$ heterosbilayer at +5% biaxial tensile strain.

Fig. S7 Two kinds of modes of charge transfer in type-II heterostructure: (a) Double-transfer mode, (b) Z-scheme mode.

Fig. S8 The positions of two band edges of GaN/MoSi₂P₄ vdW heterostructure compared to the vacuum level under different tensile strains: (a) +1%, (b) +3%, (c) +5%. The calculated results are based on the G_0W_0 level.