Supplementary Information

Bioengineered NanoAid synergistically targets inflammatory pro-tumor processes to advance glioblastoma chemotherapy

Gui Zhang,^a Yurui Xu,^b Anwei Zhou,^b Yongle Yu,^c Xinghai Ning^{*b} and Hongguang Bao^{*d}

^aThe Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China ^bNational Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China. ^cMedical College of Guangxi University, Nanning 530004, China ^dDepartment of Anaesthesiology, Perioperative and pain medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211101, China

*Corresponding authors.

E-mail address: xning@nju.edu.cn (X. Ning), hongguang_bao@163.com (H. Bao).

Abbreviation	Description
PTX	Paclitaxel
lipoPTX	Liposome formulation of PTX
lipoPC	Liposome formulation of PTX and parecoxib
MCM	Macrophage cell membrane
M@lipoPTX	MCM modified lipoPTX
NanoAid	MCM modified lipoPC
COX-2	Cyclooxygenase-2
PCA	Principal component analysis
GO	Gene Ontology
KEGG	Kyoto Encyclopedia of Genes and Genomes
cAMP	Cyclic adenosine monophosphate
MAPK	Mitogen-activated protein kinase
GABAergic	Pertaining to or producing the neurotransmitter GABA
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
CI	Combination index
BBB	Blood-brain barrier
SDS-PAGE	Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
PSGL-1	P-selectin glycoprotein ligand-1
LFA-1	Lymphocyte function-associated antigen 1
VLA-4	Very late antigen-4
TEER	Transepithelial electrical resistance
FRET	Fluorescence resonance energy transfer
$AUC_{0-\infty}$	Area under the curve from time 0 extrapolated to infinite time
t _{1/2}	Half-life time
CL	Clearance rate
H&E	Hematoxylin and eosin
TUNEL	TdT-mediated dUTP Nick-End Labeling

1. Abbreviation and description in the manuscript

Fig. S1. LipoPC stability assessment. (A) Time-dependent serum stability of lipoPC. The lipoPC stability in serum was measured over a 24-hour period at 37°C using Dynamic Light Scattering (DLS). (B) Long-term storage stability of lipoPC. The long-term storage stability of lipoPC in PBS at 4°C was measured over seven days. The values are expressed as mean \pm SD (n = 6).

Fig. S2. In vitro drug release of PTX and Parecoxib from lipoPC. The controlled release of PTX and parecoxib from lipoPC over 12 hours in PBS was measured. The values are expressed as mean \pm SD (n = 6).

Fig. S3. Hemolysis of lipoPC and NanoAid. The erythrocyte suspension, diluted with pH 7.4 PBS, was incubated with lipoPC or NanoAid at 37°C for 2 hours, after which the relative hemolysis was calculated. The values are expressed as mean \pm SD (n = 6).

Fig. S4. Cellular uptake mechanism of NanoAid in U87MG cells. U87MG cells were pretreated with various inhibitors, including sodium azide, chlorpromazine, nystatin, and amiloride, followed by incubation with C6-labeled NanoAid for 6 hours. Flow cytometry analysis was used to measure the fluorescent intensity. The values are expressed as mean \pm SD (n = 6). ***p < 0.001.

Fig. S5. Cell uptake of cRGD-pretreated U87MG cells after culturing with NanoAid for 6 hours. The values are expressed as mean \pm SD (n = 6). ***p < 0.001.

Fig. S6. The cell apoptotic rates of untreated, lipoPTX, lipoPC, M@lipoPTX, and NanoAid were quantified using Annexin V-FITC/PI staining. The values are expressed as mean \pm SD (n = 6). ***p < 0.001.

Fig. S7. Biosafety assessment of NanoAid in B.End3 cells. Cell viability was measured after 24-hour exposure to various concentrations of NanoAid. The values are expressed as mean \pm SD (n = 6).

Fig. S8. Pharmacokinetic profile of parecoxib, LipoPC, and NanoAid. (A) Plasma concentration of parecoxib. The time-dependent plasma concentration of parecoxib was determined following the intravenous injection of parecoxib, lipoPC, and NanoAid, all at a dose of 20 mg/kg. (B) Pharmacokinetic parameters of NanoAid. Various key pharmacokinetic parameters for parecoxib were measured and calculated, including the maximum concentration (Cmax) post-injection, plasma half-life ($t_{1/2}$), area under the concentration-time curve (AUC_{0-∞}), and clearance (CL). These values are presented as mean ± SD (n = 5).

Fig. S9. The quantification of COX-2 in tumor slices collected after treatment with PBS, lipoPC, M@lipoPTX, and NanoAid was performed. The values are expressed as mean \pm SD (n = 5).

Fig. S10. Measurement of tumor-associated proteins, including the glioma biomarker p53, apoptosis marker Caspase-3, and proliferation marker Ki-67, after 28 days of treatment using an ELISA kit. The values are expressed as mean \pm SD (n = 5). **p < 0.05, ***p < 0.001.

Fig. S11. The quantification of TUNEL staining in tumor slices collected post-treatment with PBS, lipoPC, M@lipoPTX, and NanoAid was conducted. The values are expressed as mean \pm SD (n = 5). ***p < 0.001.

Fig. S12. Hematoxylin and Eosin (H&E) staining of major organs following treatment with PBS, lipoPC, M@lipoPTX, and NanoAid.

Fig. S13. The weight of tumor-bearing mice was monitored throughout the 28-day treatment period. The values are expressed as mean \pm SD (n = 5).

Formulation	lipoPC	NanoAid	
Particle size (nm)	110.52±1.21	122.62±2.16	
Zeta potential (mV)	-23.62±1.34	-19.26±0.27	
EE% (PTX)	97.31±0.26	98.26±0.19	
DL% (PTX)	2.34±0.06	2.29±0.12	
EE% (Parecoxib)	45.89±1.34	46.37±2.13	
DL% (Parecoxib)	19.43±0.86	20.03±1.25	

Table S1. Characterization of lipoPC and NanoAid.

Abbreviations: EE (encapsulation efficiency). DL (drug loading). The data are presented as means \pm s. d. (n=6).

Table S2. Characterization of C6 or DiR labeled lipoPC and NanoAid.

Formulation	C6- lipoPC	C6-NanoAid	DiR-lipoPC	DiR-NanoAid
Particle size	112.3±3.1	125.2±1.4	113.6±2.3	124.2±0.4
Zeta potential	-23.7±0.2	-18.7±1.3	-23.3±1.3	-19.5±1.3
EE%	97.2±1.4	98.8±0.6	97.8±0.3	97.9±0.8

Abbreviations: EE (encapsulation efficiency). The data are presented as means \pm s. d. (n=6).