Supplemental Information

for

Rational design of stable carbon nitride monolayer membranes for

highly controllable CO₂ capture and separation from CH₄ and C₂H₂

Yongliang Yong,^{a,b*} Zhuo Cheng,^a Wentao Guo,^a Qihua Hou,^a Zhiyong Liu,^a Shaobo Huang,^a Xinli Li,^{b,c} and Yongpeng Ren^{b,c}

^a School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China

^b Advanced Materials Science Innovation Center, Longmen Laboratory, Luoyang 471003, China

^c School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China

^{*}Corresponding Author. Electronic mail: ylyong@haust.edu.cn.

Fig. S1. The number of permeated CO_2 molecules versus the simulation time in the separation of CO_2/CH_4 and CO_2/C_2H_2 at 300 K. The corresponding dotted lines are the fitted lines.

Figure S2. The initial models of (a) CO_2/CH_4 and (b) CO_2/C_2H_2 mixtures through the g- $C_{12}N_8$ membrane.

Figure S3. Electron density isosurfaces for (a) CO₂, (b) CH₄, and (c) C₂H₂ molecules permeating through the C₁₂N₈ monolayer (isovalue of 0.08 e·Å⁻³).

Figure S4. The stable adsorption sites for CO_2 on the $g-C_{12}N_8$ membrane. The values in parentheses are the corresponding adsorption energy (in eV).

Lattice Parameters	A (Coordinates (fractional)		
(Å, °)	Atom	x	У	Z
a=8.01 b=8.01 c=25 $\alpha = \beta = \gamma = 90$	Ν	0.1429	0.6736	0.5057
	Ν	0.8571	0.3264	0.4943
	Ν	0.8571	0.6736	0.4943
	Ν	0.1429	0.3264	0.5057
	Ν	0.3742	0.8551	0.5374
	Ν	0.6258	0.1449	0.4626
	Ν	0.6258	0.8551	0.4626
	Ν	0.3742	0.1449	0.5374
	С	0.2844	0.5900	0.5119
	С	0.7156	0.4100	0.4881
	С	0.7156	0.5900	0.4881
	С	0.2844	0.4100	0.5119
	С	0.4237	0.2862	0.5151
	С	0.5763	0.7138	0.4849
	С	0.5763	0.2862	0.4849
	С	0.4237	0.7138	0.5151
	С	0.0000	0.4117	0.5000
	С	0.0000	0.5883	0.5000
	С	0.4409	0.0000	0.5214
	С	0.5591	0.0000	0.4786

Table S1 Atomic coordinates for the unit cell of the $g\text{-}C_{12}N_8$ monolayer.

Membranes	Permeance (GPU)	Selectivity	Reference	
g-C ₁₂ N ₈	1.21×10 ⁷	3.03×10 ³	This work	
MMM-0.5wt.%	154	21.4	[1]	
2D-CAP	4.824×10^5	32	[2]	
GO-PEGDA500	175.5	69.5	[3]	
LDH membrane with 8 nm-thick	202	7	[4]	
GDY monolayer(x=10%,y=20%)	1.29×10^{6}	5.27×10 ³	[5]	
ZSM-58 zeolite membranes(0.2MPa)	510	290	[6]	
MMM 15%	2.74	13.30	[7]	
PES CNTs	35.18	4.97	[8]	
Charged NPG	5.65×10^{6}	42.8	[9]	
Strain-controlled graphenylene	3.52×10^{6}	1.8×10^5	[10]	
CHA (t < 500 nm)	3.82×10 ⁴	198	[11]	
Amino-functionalized SAPO-34	1.5×10 ³	245	[12]	
g-C ₃ N ₄ -MXene-X/Pebax	about 1.2×10 ³	47.76	[13]	

Table S2 A summary of the CO_2/CH_4 separation performance of membranes in this work along with reported literature.

Table S3 A summary of the CO_2/C_2H_2 separation performance of membranes in this work along with reported literature.

Membranes	Permeance (GPU)	Selectivity	Reference
g-C ₁₂ N ₈	1.39×10 ⁷	310	This work
Strain-controlled C ₂ N	5.05×10 ³	6	[14]
Strain-controlled C ₂ O	1.44×10^{6}	6	[14]
Porous graphene	585	17	[15]
High-silica CHA zeolite	3.28×10 ³	55	[16]
ZIF-8 M-60	319.1	1.8	[17]

Reference:

[1] M. Tamaddodnar, A. B. Foster, M. Carta, P. Gorgojo, N. B. McKeown and P. M. Budd, ACS

Appl. Mater. Interfaces, 2020, 12, 46756-46766.

- [2] W. S. Wang, Q. G. Hou, K. Gong, Y. G. Yan and J. Zhang, Appl. Surf. Sci., 2019, 494, 477-483.
- [3] S. F. Wang, Y. Xie, G. W. He, Q. P. J. Xin, H. Zhang, L. X. Yang, Y. F. Li, H. Wu, Y. Z. Zhang,
- M. D. Guiver and Z. Y. Jiang, Angew. Chem. Int. Ed., 2017, 56, 14246-14251.
- [4] Y. T. Liu, H. Wu, L. F. Min, S. Q. Song, L. X. Yang, Y. X. Ren, Y. Z. Wu, R. Zhao, H. J. Wang
- and Z. Y. Jiang, Appl. Surf. Sci., 2020, 598, 117663.
- [5] X. Zheng, S. Ban, B. Liu and G. J. Chen, Chinese J. Chem. Eng., 2020, 28, 1898-1903.
- [6] E. Hayakawa and S. Himeno, Micropor. Mesopor. Mater., 2020, 219, 109695.
- [7] R. Ebadi, H. Maghsoudi and A. A. Babaluo, J. Nat. Gas Sci., 2021, 90, 103947.
- [8] T. D. Kusworo, A. F. Ismail and Budiyono, World Appl. Sci. J., 2014, 31, 1512-1521.
- [9] C. Sun and B. Bai, J. Phys. Chem. C, 2017, 122, 6178-6185.
- [10] L. Zhu, Y. Jin, Q. Xue, X. Li, H. Zheng, T. Wu and C. Ling, J. Mater. Chem. A, 2016, 4, 15015-15021.
- [11] L. Yu, M. S. Nobandegani and J. Hedlund, J. Membrane Sci., 2022, 641, 119888.
- [12] S. R. Venna and M. A. Carreon, Langmuir, 2011, 27, 2888-2894.
- [13] Y. Y. Dai, T. Fang, S. M. Li, Y. Y. Wang, S. Y. Zhong, W. J. Su and J. Li, Sep. Purif. Technol., 2024, 348, 127776.
- [14] L. Zhu, X. Chang, Y. Yin, P. Wang, X. Li and Q. Xue, Appl. Surf. Sci., 2020, 530, 147250.
- [15] S. M. Zeng, T. Wang, Y. B. Zhang, B. G. Elmegreen, B. Q. Luan and Z. L. Gu, *Langmuir*, 2023, **39**, 8638–8645.
- [16] N. D. Anjikar, K. R. Hinkle, O. Talu, Q. Fu, S. Nair and S. W. Yang, *J. Membrane Sci.*, 2023, 683, 121853.
- [17] S. Y. Zhu, Q. J. Lin, X. P. Huang, L. J. Chen, L. Z. Liu, Z. Z. Yao and S. C. Xiang, ACS Omega, 2021, 6, 33018–33023.