Supplementary Information (SI) for Nanoscale. This journal is © The Royal Society of Chemistry 2025

Supporting Information

## Understanding fatigue and recovery mechanism in $Hf_{0.5}Zr_{0.5}O_2$ based thin films capacitors for high endurance ferroelectric memory and neuromorphic hardware

Xinye Li, Padma Srivari, Ella Paasio and Sayani Majumdar \*

X. Li, P. Srivari, E. Paasio, S. Majumdar

Faculty of Information Technology and Communication Sciences, Tampere University, 33720 Tampere, Finland

E-mail: sayani.majumdar@tuni.fi



Figure S1. Long range scan of  $2\theta$  from  $10^{\circ}$  to  $80^{\circ}$  by GIXRD for samples S1, S2 and S3.



**Figure S2.** DHMs measured before fatigue pulsing cycle (black lines), after certain number of fatigue cycles (orange to red lines) of S1, S2 and S3. (**a,b,c**) I-V plots; Fatigued and after recovery DHMs (red and blue lines) of S1, S2 and S4 (**d,e,f**) I-V plots, (**g,h,i**) are P-E plots.



Figure S3. Extracted  $P_r$  values from PUND hysteresis plotted in accordance with applied electric field.



**Figure S4.** DHMs measured from devices at multiple different locations of the wafer from S1, S2 and S3 for a quick comparison.



Figure S5. Static Current density -Voltage characteristics of samples S1, S2, S3 and S4.