Electronic Supplementary Information

Exploring optimal *in-situ* fabrication conditions to realize core–shell CsPbBr₃ QDs with high PLQYs and structural stabilities by dual-defect passivation[†]

Dokyum Kim,^{‡a} Soogeun Kim,^{‡a} Sang-Youp Yim,^a and Chang-Lyoul Lee^{*a}

^aAdvanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea

[‡] These authors contributed equally.

*Address for correspondence:

Chang-Lyoul Lee, Ph.D.

Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST)

123 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 61005, Republic of Korea

E-mail addresses: vsepr@gist.ac.kr

Figure S1. Molecular structure of (3-mercaptopropyl)triethoxysilane (MPTES).

Figure S2. **(a-e)** Deconvoluted PL spectra of core–shell M–CsPbBr₃ QDs fabricated as a function of MPTES concertation (MPTES/Pb mol ratio). **(f)** Contribution of each CsPbBr₃ QDs (pristine CsPbBr₃ QDs and core–shell M–CsPbBr₃ QDs) fabricated from Pb-olate (OA) and Pb-thiolate (MPTES) to PL intensity. MPTES was injected into the Pb-pot immediately after degassing the Pb-pot. Reaction time was ~5 s.

Figure S3. PL spectra of pristine CsPbBr₃ QDs and MPTES–CsPbBr₃ QDs. MPTES–CsPbBr₃ QDs were fabricated by substituting OA with MPTES (OA-free) as a ligand (see Experimental method). MPTES (MPTES/Pb mol ratio of 1.0) was injected into the Pb-pot immediately after degassing the Pb-pot. Reaction time was ~5 s.

Figure S4. XRD patterns of pristine CsPbBr₃ QDs and core–shell M–CsPbBr₃ QDs as a function of MPTES concentration (MPTES/Pb mol ratio). The pristine CsPbBr₃ QDs and core–shell M–CsPbBr₃ QDs showed the orthorhombic crystal structure (JCPDS card no. 98-009-7851). MPTES was injected into the Pb-pot immediately after degassing the Pb-pot. Reaction time was ~5 s.

Figure S5. Digital photograph of **(a, c)** Cs-oleate solution and **(b, d)** Pre-mixed solution (Cs-oleate with MPTES). **(e)** Digital photograph of precipitated core–shell M–CsPbBr₃ QDs after purification. **(e, left)** The core–shell M–CsPbBr₃ QDs were fabricated using Cs-oleate solution. **(e, right)** core–shell M–CsPbBr₃ QDs was fabricated using pre-mixed (MPTES and Cs-oleate) solution.

Figure S6. Deconvoluted PL spectra of core–shell M–CsPbBr₃ QDs fabricated under different reaction time. (a) ~5 s and (b) ~20 s. MPTES (MPTES/Pb mol ratio of 1.4) was injected into the Pb-pot immediately before Cs-oleate injection.

Figure S7. XPS spectra of core–shell M–CsPbBr₃ QDs fabricated under different reaction times. MPTES (MPTES/Pb mol ratio of 1.4) was injected into the Pb-pot immediately before Cs-oleate injection.

Figure S8. (a) Digital photograph of trigonal- Cs_4PbBr_6 nanocrystals precipitated in crude solution. **(b)** XRD pattern, and **(c)** absorbance spectrum of trigonal- Cs_4PbBr_6 nanocrystals. MPTES was injected into the Pbpot immediately before Cs-oleate injection. MPTES/Pb mol ratio was 3.0 and reaction time was ~20s.

Figure S9. Effect of synthetic parameters (MPTES injection time, MPTES concentration (MPTES/Pb mol ratio), and reaction time) on the optical properties of core–shell M–CsPbBr₃ QDs. (a) $PL_{\lambda max}$, (b) FWHM, and (c) PLQYs.

Figure S10. (a) Scanning transmission electron microscopy (STEM) image of core–shell M–CsPbBr₃ QDs cluster. **(b)** High magnified HR-TEM image of core–shell M–CsPbBr₃ QDs. **(c-e)** TEM-EDS line scanning profiles and spectrum.

Figure S11. (a) Raman spectra, **(b)** XPS spectra and **(c)** XRD patterns of pristine CsPbBr₃ QDs, shell–less M–CsPbBr₃ QDs and core–shell M–CsPbBr₃ QDs. MPTES was injected into the Pb-pot immediately before Cs-oleate injection. MPTES/Pb mol ratio was 2.4 and reaction time was ~20 s.

Figure S12. HR-TEM images and size distributions of three CsPbBr₃ QDs. (a) and (d) pristine CsPbBr₃ QDs, (b) and (e) shell–less M–CsPbBr₃ QDs, (c) and (f) core–shell M–CsPbBr₃ QDs. MPTES was injected into the Pb-pot immediately before Cs-oleate injection. MPTES/Pb mol ratio was 2.4 and reaction time was ~20 s.

Figure S13. The PL spectra of (a) pristine $CsPbBr_3 QDs$, (b) shell–less M–CsPbBr₃ QDs, and (c) core–shell M CsPbBr₃ QDs as a function of immersion time in DI water.

Figure S14. The PL spectra of (a) pristine CsPbBr₃ QDs, (b) shell–less M–CsPbBr₃ QDs, and (c) core–shell M–CsPbBr₃ QDs as a function of air exposure time.

Element	Weight %	Atomic %
Cs	25.70	17.27
Pb	30.75	13.25
Br	37.14	41.49
Si	3.24	10.30
0	3.17	17.69

Table S1. Element quantitative analysis result of core–shell M–CsPbBr₃ QDs

Movie S1. Color change of the Pb-pot after MPTES injection (MPTES/Pb mol ratio of 0.6). MPTES was injected into the Pb-pot immediately after degassing the Pb-pot. (8x speed).

Movie S2. Color change of the Pb-pot after MPTES injection (MPTES/Pb mol ratio of 1.4). MPTES was injected into the Pb-pot immediately after degassing the Pb-pot. (8x speed).

Movie S3. Color change of the Pb-pot after MPTES injection (MPTES/Pb mol ratio of 2.4). MPTES was injected into the Pb-pot immediately before Cs-oleate injection.