Supplementary Information

Gadolinium oxide-decorated graphene oxide-based dualstimuli-responsive smart fluids

Hyukjoon Gwon, Hamin Kim and Seungae Lee*

Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea

^{*} Corresponding author. Tel.: +82-2-2049-6109; E-mail address: <u>salee@konkuk.ac.kr</u> (S. Lee).

1. High resolution TEM images of GO and Gd₂O₃/GO composite.

Fig. S1 High resolution TEM images of a) GO and b) Gd₂O₃/GO composite with a Gd₂O₃:GO ratio of 1:2.

2. C 1s, O 1s and Gd 4d XPS spectra of Gd₂O₃/GO composite with Gd₂O₃:GO ratios of 1:2 and 1:3.

Fig. S2 a) C 1s, b) O 1s and c) Gd 4d XPS spectra of the Gd_2O_3/GO composite with a Gd_2O_3 :GO ratio of 1:2, and d) C 1s, e) O 1s and f) Gd 4d XPS spectra of the Gd_2O_3/GO composite with a Gd_2O_3 :GO ratio of 1:3.

3. FTIR spectra of GO and Gd₂O₃/GO composites.

Fig. S3 FTIR spectra of GO and Gd₂O₃/GO composites with Gd₂O₃:GO ratios of 1:1, 1:2, and 1:3.

4. Fitting results and parameters for Bingham model and CCJ model of Gd₂O₃/GO-based EMR fluids.

Fig. S4 Electro-responsive properties of the Gd₂O₃/GO-based EMR fluids with a Gd₂O₃:GO ratio of 1:1 and fitted results for a) Bingham model and b) CCJ model.

Fig. S5 Electro-responsive properties of the Gd₂O₃/GO-based EMR fluids with a Gd₂O₃:GO ratio of 1:2 and fitted results for a) Bingham model and b) CCJ model.

Fig. S6 Electro-responsive properties of the Gd₂O₃/GO-based EMR fluids with a Gd₂O₃:GO ratio of 1:3 and fitted results for a) Bingham model and b) CCJ model.

Table S1. The fitting parameters of the Bingham and Cho–Choi–Jhon (CCJ) models for the flow curves of the Gd_2O_3/GO composite-based EMR fluid with a Gd_2O_3 :GO ratio of 1:1.

Model	Parameter ^a	$0 kV \ mm^{-1}$	$\begin{array}{c} 0.5kV\\ mm^{-1} \end{array}$	$1.0\mathrm{kV}$ mm ⁻¹	$1.5\mathrm{kV}$ mm ⁻¹	$\frac{2.0kV}{mm^{-1}}$	$\begin{array}{c} 2.5 kV \\ mm^{-1} \end{array}$	$\begin{array}{c} 3.0 kV \\ mm^{-1} \end{array}$	$\begin{array}{c} 3.5kV\\mm^{-1}\end{array}$	$\frac{4.0kV}{mm^{-1}}$
Bingham	τ_y	7.682	10.31	12.90	16.69	19.74	22.11	27.55	36.50	45.98
	η_∞	0.185	0.184	0.186	0.181	0.183	0.193	0.199	0.205	0.217
ССЈ	$ au_{\mathrm{y}}$	6.143	8.506	13.63	43.43	18.58	27.55	48.66	120.4	138.1
	η_∞	0.188	0.191	0.197	0.195	0.201	0.213	0.222	0.234	0.252
	t_1	0.005	0.007	0.008	12.75	2.116	2.593	3.076	13.65	8.542
	t_2	0.187	0.105	0.113	3.523	0.014	0.007	0.040	0.013	0.018
	α	1.862	1.347	0.391	0.165	3.271	2.122	1.230	0.448	0.286
	β	0.906	0.926	0.985	1	1	0.935	0.882	0.689	0.525

^{*a*} τ_y: yield stress / η_{∞} : viscosity at high shear rate / t_1 , t_2 : time constant / α , β : exponents for model fitting.

Model	Parameter ^a	$\begin{array}{c} 0 \ kV \\ mm^{-1} \end{array}$	$\begin{array}{c} 0.5 \ kV \\ mm^{-1} \end{array}$	$\begin{array}{c} 1.0 \ kV \\ mm^{-1} \end{array}$	$1.5 \text{ kV} \text{mm}^{-1}$	$\begin{array}{c} 2.0 \ kV \\ mm^{-1} \end{array}$	$\begin{array}{c} 2.5 \ kV \\ mm^{-1} \end{array}$	$\begin{array}{c} 3.0 \ kV \\ mm^{-1} \end{array}$	$\begin{array}{c} 3.5 \ kV \\ mm^{-1} \end{array}$	$\begin{array}{c} 4.0 \ kV \\ mm^{-1} \end{array}$
Bingham	$ au_{y}$	15.72	22.44	35.28	52.75	71.19	87.35	98.45	100.2	99.25
	η_∞	0.226	0.220	0.202	0.183	0.166	0.158	0.167	0.193	0.223
ССЈ	$ au_{y}$	7.85	18.40	71.80	94.72	121.1	193.3	220.7	265.3	314.4
	η_∞	0.235	0.240	0.239	0.243	0.245	0.248	0.259	0.272	0.294
	t_1	0.022	0.034	1.828	0.014	0.010	5.362	8.418	10.51	17.33
	t_2	0.012	0.025	7.382	8.925	9.514	1.901	0.011	0.005	0.019
	α	0.309	0.642	0.026	0.071	0.092	0.068	0.128	0.181	0.251
	β	0.768	0.715	0.388	0.987	0.996	1	0.762	0.522	0.315

Table S2. The fitting parameters of the Bingham and Cho–Choi–Jhon (CCJ) models for the flow curves of the Gd_2O_3/GO composite-based EMR fluid with a Gd_2O_3 :GO ratio of 1:2.

^{*a*} τ_y: yield stress / η_{∞} : viscosity at high shear rate / t_1 , t_2 : time constant / α , β : exponents for model fitting.

Table S3. The fitting parameters of the Bingham and Cho–Choi–Jhon (CCJ) models for the flow curves of the Gd₂O₃/GO composite-based EMR fluid with a Gd₂O₃:GO ratio of 1:3.

Model	Parameter ^a	$\begin{array}{c} 0 \ kV \\ mm^{-1} \end{array}$	$\begin{array}{c} 0.5 \ kV \\ mm^{-1} \end{array}$	$1.0 \ \mathrm{kV} \ \mathrm{mm}^{-1}$	$1.5 \text{ kV} \text{mm}^{-1}$	$\begin{array}{c} 2.0 \ kV \\ mm^{-1} \end{array}$	$\begin{array}{c} 2.5 \ kV \\ mm^{-1} \end{array}$	$\begin{array}{c} 3.0 \ kV \\ mm^{-1} \end{array}$	$\begin{array}{c} 3.5 \ kV \\ mm^{-1} \end{array}$	$\begin{array}{c} 4.0 \ kV \\ mm^{-1} \end{array}$
Bingham	$ au_y$	7.915	17.18	37.31	62.46	92.16	124.3	159.0	195.9	230.9
	η_∞	0.249	0.234	0.214	0.195	0.175	0.165	0.158	0.154	0.162
ССЈ	$ au_y$	4.132	31.45	62.94	138.7	170.5	223.0	313.2	383.0	496.0
	η_∞	0.250	0.249	0.254	0.263	0.271	0.291	0.316	0.345	0.387
	t_1	0.027	0.031	0.005	9.931	0.343	0.017	0.860	8.101	6.017
	t_2	0.016	3.841	6.511	0.166	0.030	0.335	0.038	0.003	0.001
	α	2.037	0.013	0.099	0.067	0.059	0.060	0.049	0.049	0.072
	β	0.496	0.215	0.2153	0.545	1	1	1	1	0.711

^{*a*} τ_y: yield stress / η_{∞} : viscosity at high shear rate / t_1 , t_2 : time constant / α , β : exponents for model fitting.

5. Comparative analysis of GO and Fe₃O₄-based smart fluids.

Stimuli	Stimuli-responsive material	Filler content	Maximum applicable field strength/stimuli response F $(0.1 \text{ s}^{-1})^a$	Reference
	GO	5 wt%	5.0 kV mm^{-1} / ~280 Pa	1
	GO	5 wt%	2.5 kV mm^{-1} / ~200 Pa	2
Electric field	Polyhedral oligomeric silsesquioxane-decorated GO	3 wt%	3.0 kV mm^{-1} / ~400 Pa	3
Electric field	PS-GO microspheres	10 vol%	2.0 kV mm^{-1} / ~100 Pa	4
	GO/Al ₂ O ₃ composite	20 wt%	5.0 kV mm^{-1} / ~100 Pa	5
	Graphene oxide-coated mesoporous silica spheres	3 wt%	3.0 kV mm^{-1} / ~35 Pa	6
	Octahedral-shaped Fe ₃ O ₄ nanoparticles	10 vol%	343 kA m ⁻¹ / \sim 1000 Pa	7
	Flower-like Fe ₃ O ₄ microspheres	30 wt%	250 kA $m^{-1}/\sim 20$ Pa	8
M (* (* 11	Fe ₃ O ₄ @mSiO ₂ nanoparticles	5 vol%	171 kA $m^{-1}/\sim 1000$ Pa	9
Magnetic field	Core–shell structured PS/Fe ₃ O ₄ microbead	11 vol%	$343 \text{ kA m}^{-1}/{\sim}80 \text{ Pa}$	10
	Carbon layer modified Fe ₃ O ₄ nanospheres	10 wt%	$350 \text{ kA m}^{-1}/{\sim}10 \text{ Pa}$	11
	PMMA/ Fe ₃ O ₄ composites	10 vol%	1999 mA /~40 Pa	12
	Fe ₃ O ₄ @GO-PS composites	5 vol% (ER) / 10 vol% (MR)	E: 3.0 kV mm ⁻¹ / ~25 Pa M: 171 kA m ⁻¹ / ~15 Pa	13
Electric field	Fe ₃ O ₄ /GO composites	15 wt% (ER) / 20 vol% (MR)	E: 2.5 kV mm ⁻¹ / ~90 Pa M: 257 kA m ⁻¹ / ~650 Pa	14
& Magnetic field	SiO ₂ /TiO ₂ @ Fe ₃ O ₄ /SiO ₂ nanoparticles	20 vol%	E: 3.0 kV mm ⁻¹ / ~10 Pa M: 796 kA m ⁻¹ / ~350 Pa	15
	Gd ₂ O ₃ /GO composite	0.6 wt%	E: 4.0 kV mm ⁻¹ / 266 Pa M: 343 kA m ⁻¹ / 1416 Pa	This work

Table S4. Comparative analysis of ER, MR and EMR fluids composed of GO and Fe₃O₄-based materials.

^{*a*} E: maximum applied electric field, M: maximum applied magnetic field.

6. References.

- 1 J. Hong and J. Jang, *Soft Matter*, 2012, **8**, 7348–7350.
- 2 W. Zhan, Y. Liu, H. Choi and S. Kim, ACS Appl. Mater. Interfaces, 2012, 4, 2267–2272.
- 3 Y. Li, Y. Guan, Y. Liu, J. Yin and X. Zhao, *Nanotechnology*, 2016, 27, 195702.
- 4 S. Kim, W. Zhang and H. Choi, J. Mater. Chem. C, 2014, 2, 7541–7546.
- 5 W. Zhang, H. Choi and Y. Leong, Mater. Chem. Phys., 2014, 145, 151–155.
- 6 C. Yoon, S. Lee, S. Hong and J. Jang, J. Colloid Interface Sci., 2015, 438, 14–21.
- 7 H. Jung and H. Choi, J. Appl. Phys., 2015, 117, 17E708.
- 8 G. Wang, D. Zhao, N. Li, Y. Zeng, S. Han, Y. Ma, X. Dong and R. Yu, J. Ind. Eng. Chem., 2019, 79, 17–225.
- 9 W. Han, S. Piao, H. Choi and Y. Seo, Colloids Surf. A: Physicochem. Eng. Asp., 2017, 524, 79-86.
- 10 F. Fang, J. Kim and H. Choi, *Polymer*, 2009, **50**, 2290–2293.
- L. Bai, L. Pei, S. Cao, X. He, M. Sang, W. Jiang, S. Xuan and X. Gong, J. Magn. Magn. Mater., 2020, 505, 166734.
- 12 M. Hong, B. Park and H. Choi, J. Phys. Conf. Ser., 2009, 149, 012055.
- 13 Q. Lu, H. Jin and H. Choi, J. Mol. Liq., 2022, 365, 120083.
- 14 W. Zhang, Y. Tian, Y. Liu, Z. Song, J. Liu and H. Choi, *RSC Adv.*, 2016, 6, 77925–77930.
- 15 C. Yoon, Y. Jang, S. Lee and J. Jang, J. Mater. Chem. C, 2018, 6, 10241–10249.