Self-Supporting Poly (3,4-ethylenedioxythiophene) and Fe_3C Co-Decorated Electrospun Carbon Nanofibers as Li_2S Supporter for Lithium Sulfur Batteries

Na Yang,^a Yuanxiao Ji,^a Jiyuan Zhang,^a Jiarui Xue,^a Weiye Zhang,^a Xuexia He,^a Qi Li,^a Zhibin Lei ^{a,*}, Zonghuai Liu^a and Jie Sun^{a,*}

^aKey Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China.

Supporting Information

Figure S1 The phase structure and morphology characterization results of $PAN/Fe(acac)_3$ and $CNFs@Fe_3C$ composite nanofiber membranes: (a, b) SEM images of $PAN/Fe(acac)_3$, (c) XRD pattern, (d, e) SEM images of $CNFs@Fe_3C$, (f) Raman spectra.

Figure S2 TEM characterization results of CNFs@Fe₃C nanofiber membranes: (a) TEM-BF image, (b) HRTEM image, (c) Corresponding FFT figure, (d) IFFT figure, (e) STEM-DF image, (f-h) EDX mapping results of the distribution of Fe, C and overlay mapping.

Figure S3 SEM images of the P@CNFs@Fe₃C-16%-Li₂S cathode after 1000 cycles under different magnifications (a, b).

Figure S4 The cyclic performance (a) and corresponding galvanostatic chargedischarge curve (b) of P@CNFs@Fe₃C-16% cathode under high Li_2S loading amount and low E/Li₂S ratio.

Cathode Materials	Cyclic Performance (mAh g ⁻¹)	Li ₂ S loading amount (mg cm ⁻²)	References
Li ₂ S@C	411 (0.1C, 50 cycles)	0.54	1
MWCNT-Li ₂ S	550 (0.1C, 100 cycles)	1	2
Li2S/CNT/C-N/O	671 (0.1C, 200 cycles)	~2	3
Li ₂ S-rGO	315 (0.1C, 100 cycles)	0.96	4
ML-Ti ₃ C ₂ /Li ₂ S	450 (0.2C 100 cycles)	0.8	5
Li ₂ S/FWNTs@rGO NBF	868 (0.2C, 300 cycles)	1.0-1.5	6
Li ₂ S-ZnS@NC	640 (0.2C, 100 cycles)	2	7
Li ₂ S-PPy	785 (0.2C, 400 cycles)	~1	8
Li ₂ S-PAN	665 (0.5C, 250 cycles)	2.5	9
Nano-Li ₂ S/rGO	898 (0.5C, 145 cycles)	0.8-1.5	10
P@CNFs@Fe ₃ C	580 (0.1C, 100 cycles)	1.2	This work

Table S1 Electrochemical performance comparison of the recent reported Li₂S-based cathode in Li-S batteries

References

- 1. K. Cai, M.-K. Song, E. J. Cairns and Y. Zhang, *Nano Letter*, 2012, **12**, 6474-6479.
- F. Wu, A. Magasinski and G. Yushin, *Journal of Energy Chemistry*, 2013, 2, 6064-6070.
- 3. Y. Peng, Y. Zhang, Z. Wen, Y. Wang, Z. Chen, B.-J. Hwang and J. Zhao, *Chemical Engineering Journal*, 2018, **346**, 57-64.
- 4. Y. Kim, Y. Noh, S. Lee, J. Bae, Y. Kim, H. Ahn and W. B. Kim, *ChemSusChem.*, 2020, **12**, 824-829.
- 5. X. Liang, J. Yun, K. Xu, H. Xiang, Y. Wang, Y. Sun and Y. Yu, *Journal of Energy Chemistry*, 2019, **39**, 176-181.
- Y. Chen, S. Lu, J. Zhou, W. Qin and X. Wu, Advanced Functional Materials, 2017, 27, 1700987.
- M. Yu, S. Zhou, Z. Wang, W. Pei, X. Liu, C. Liu, C. Yan, X. Meng, S. Wang, J. Zhao and J. Qiu, *Advanced Functional Materials*, 2019, 29, 1905986.
- H. Yan, H. Wang, D. Wang, X. Li, Z. Gong and Y. Yang, *Nano Letters*, 2019, 19, 3280-3287.
- Z. W. Seh, H. Wang, P.-C. Hsu, Q. Zhang, W. Li, G. Zheng, H. Yao and Y. Cui, *Energy & Environmental Science*, 2013, 7, 672-676.
- C. Wang, X. Wang, Y. Yang, A. Kushima, J. Chen, Y. Huang and J. Li, *Nano Letters*, 2015, 15, 1796-1802.