Supplementary Information

Modified MXene Composite Sensor with Sulphur Impurities for Electrochemical Detection of Lead in Aqueous System

Km Sapna, ^{1,2}, Vartika Sharma ^{2,3}, Manoj Kumar ^{1#}, Vaibhav Kulshrestha ^{2,3*}

¹Department of Physics, Malaviya National Institute of Technology, JLN Marg, Jaipur-302017, Rajasthan, India

²CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India

³Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh-201002, India *Email:* vaibhavk@csmcri.res.in*, mkumar.phy@mnit.ac.in[#]

SI-1: Fabrication of Plastic Chip Electrode (PCE)

Firstly, a thick solution of PMMA was made by dissolving it in chloroform. Graphite powder was then added to the PMMA solution, forming a viscous mixture, which was subjected to ultrasonication for 15 minutes to ensure uniform dispersion and optimal consistency. This PMMA-graphite suspension was poured into a custom glass mold and allowed to stand at room temperature for 24 hours to enable complete chloroform evaporation. The resulting PCE sheets, approximately $380 \pm 10 \mu m$ thick, had a resistance of about $28 \pm 2 \Omega$. These sheets were then cut into $1.5 \times 1 \text{ cm}^2$ pieces and laminated manually with a cello tape to fix the exposed surface area, with a circular active area of 0.28 cm^2 (excluding contact regions), preparing them for subsequent experimental applications.

SI-2: Electrochemical active surface area of bare PCE, composite electrodes

CV at different scan rates in 5.0 mM (K₄[Fe (CN)₆]) solution with 0.1 M KCl were recorded of bare PCE, TiMX/PCE, S-Bi/PCE, and S-Bi@TiMX/PCE, as shown in Figure S1. The electrochemical surface areas of bare PCE, TiMX/PCE, S-Bi/PCE, and S-Bi@TiMX/PCE were calculated using slopes of corresponding calibration plots in Randles-Sevcik equation (Equation S1):

$$I_p = (2.69 \times 10^5) A C n^{3/2} D^{1/2} v^{1/2}$$
(i)

Where,

 I_p corresponds anodic peak current (A),

A corresponds to electrochemical active sur face area of electrode (cm²),

C refers to concentration of (mol/cm³),

n denotes number of electrons involved in the redox process (n=1),

D stands for diffusion coefficient of analyte (Fe $[CN_6]^{-3/-4}$ (D = 7.6 × 10⁻⁶ cm²/s)

 υ denotes scan rate (V/s)

The electrochemical active surface areas of PCE, TiMX/PCE, S-Bi/PCE, and S-Bi@TiMX/PCE were calculated to be 0.009, 0.0120, 0.015 and 0.028 cm², respectively.

Figure. S1 (*a*), (*c*), (*e*), and (*g*) *CVs* of bare PCE, TiMX/PCE, S-Bi/PCE, and S-Bi@TiMX/PCE at different scan rates in 5.0 mM (K_4 [Fe (CN)₆]) solution with 0.1 M KCl, and (*b*), (*d*), (*f*), and (*h*) corresponding linear calibration plots of anodic and cathodic peak current densities.