Supporting Information for

Structural Diversity Dependent Cation Incorporation into Magnetic Cr-Se Nanocrystals

Yifen Wang^{‡a}, Wei Zhao^{‡a}, Bin Wang^a, Zhendong Song^a, Huan Yang^a, Fang Wang^a, Xiaohong Xu^a, and Yang Liu*^b

^aResearch Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030031, China.

^bDepartment of Materials Science, Fudan University, Shanghai 200433, China.

metal	Cr:Se	Reaction	Ligands	Reaction	Product NCs	
precursor	molar ratio	time (min)	Liguido	temperature (°C)	1 Todaet NC3	
Cr(acac) ₃	1:2	180	OAm	340	Cr ₂ Se ₃ nanoplatelets	
	1:2	180	TOA	340	Cr ₂ Se ₃ nanoplatelets	
CrCl ₂	1:2	180	OAm	340	Cr ₃ Se ₄ nanoflowers	
	1:2	180	TOA	340	Cr ₃ Se ₄ nanoplates	
	1:1.8	120	OAm	340	Cr ₂ Se ₃ nanoplatelets	
	1:4	180	ТОА	340	Cr ₂ Se ₃ nanoplatelets	

Table S1. Summary of experimental parameters used for the synthesis of Cr-Se NCs.

templates	Metal precursor, mass	or, Reaction Rea temperature (°C) time		Product NCs
Cr ₂ Se ₃ nanoplatelets	InCl ₃ , 11.0 mg	100+340	120	InSe
	InCl ₃ , 11.0 mg	300+340	120	InSe
	$Cu(acac)_2$, 5.2 mg	260	60	Cu ₂ Se
	Ag(OAc), 3.3 mg	100	60	Ag ₂ Se+Ag
	ZnCl ₂ , 13.6 mg	340	60	ZnSe
	CdCl ₂ , 9.2 mg	340	60	CdSe
	InCl ₃ , 11.0 mg	100+340	120	InSe
	InCl ₃ , 11.0 mg	300+340	120	In ₂ Se ₃
Cr ₃ Se ₄	$Cu(acac)_2$, 5.2 mg	260	60	CuCrSe ₂
nanoplates	Ag(OAc), 3.3 mg	100	60	Ag ₂ Se+Cr ₃ Se ₄
	ZnCl ₂ , 27.2 mg	340	150	ZnSe
	CdCl ₂ , 18.3 mg	340	60	CdSe
	InCl ₃ , 11 mg	100+340	120	InSe
	InCl ₃ , 11 mg	300+340	120	InSe+In ₂ Se ₃
Cr ₃ Se ₄	$Cu(acac)_2$, 5.2 mg	340	120	CuCrSe ₂
nanoflowers	Ag(OAc), 3.3 mg	100	60	Ag ₂ Se+Cr ₃ Se ₄
	ZnCl ₂ , 27.2 mg	340	150	ZnSe
	CdCl ₂ , 9.2 mg	340	150	CdSe

Table S2. Summary of experimental parameters used for the CE reactions with Cr-Se NCs.

Ref.	Element ratio%	Element ratio%	Element ratio%
Fig. 1b	Cr 4	Se 57.4%	
Fig. 1g	Cr 4	Se 56.9%	
Fig. 11	Cr 4	Se 56.8%	
Fig. 2b	In 55.9%	Cr 1.0%	Se 43.1%
Fig. 2f	In 50.2%	Cr 1.2%	Se 48.5%
Fig. 2j	In 37.7%	Cr 3.5%	Se 58.8%
Fig. 2n	In 54.9%	Cr 1.6%	Se 43.5%
Fig. 3c3	Cu 56.4%	Cr 13.3%	Se 30.3%
Fig. 3d3	Cu 24.6%	Cr 27.4%	Se 48.0%
Fig. 3e3	Cu 26.4%	Cr 23.5%	Se 50.2%
Fig. 3g3	Ag 66.0%	Cr 14.3%	Se 19.8%
Fig. 3h3	Ag 28.1%	Cr 30.9%	Se 41.1%
Fig. 3i3	Ag 17.7%	Cr 36.6%	Se 45.6%
Fig. 3k3	Zn 48.7%	Cr 2.0%	Se 49.3%
Fig. 313	Zn 50.7%	Cr 1.6%	Se 47.6%
Fig. 3m3	Zn 48.9%	Cr 2.3%	Se 48.8%
Fig. 303	Cd 58.1%	Cr 1.4%	Se 40.5%
Fig. 3p3	Cd 57.1%	Cr 1.8%	Se 41.2%
Fig. 3q3	Cd 55.0%	Cr 2.4%	Se 42.6%

Table S3. Quantitative EDS results obtained from EDS elemental mapping.

Fig. S1. Size distribution histograms of (a) Cr_2Se_3 nanoplatelets, (b) Cr_3Se_4 nanoplates (c) Cr_3Se_4 nanoflowers, ZnSe NCs obtained by CE reactions with (d) Cr_2Se_3 nanoplatelets (e) Cr_3Se_4 nanoplates, and (f) Cr_3Se_4 nanoflowers. CdSe NCs obtained by CE reactions with (g) Cr_2Se_3 nanoplatelets, (h) Cr_3Se_4 nanoplates, and (i) Cr_3Se_4 nanoflowers.

Fig. S2. EDS spectra of Cr-Se NCs and In-Se nanosheets synthesized via CE reactions.

Fig. S3. EDS spectra of Cu-Cr-Se, Cr-Ag-Se, ZnSe, and CdSe NCs synthesized via CE reactions.

Fig. S4. XPS spectra of Se 3d region of (a) Cr_2Se_3 nanoplatelets, (b) Cr_3Se_4 nanoplates, and (c) Cr_3Se_4 nanoflowers.

Fig. S5. Structural model of Cr₃Se₄ and Cr₂Se₃.

Fig. S6. (a) XRD patterns of the Cr_2Se_3 NCs synthesized using $Cr(CO)_6$ precursor with OAm or TOA as ligands. (b) Representative TEM image of Cr_2Se_3 nanoplatelets synthesized using TOA.

Fig. S7. (a) XRD pattern, (b) HRTEM, and (c) TEM image of InSe nanosheets obtained by injecting Cr_2Se_3 nanoplatelets into In-complex solution at 100 °C.

Fig. S8. In_2Se_3 phase obtained when Cr_3Se_4 nanoflowers were used as the template for CE reactions, with minor InSe as the secondary phase.

Fig. S9. Size distribution histograms of (a) lateral size and (b) thickness of InSe nanosheets synthesized via In^{3+} exchange with Cr_2Se_3 nanoplatelets. (c) lateral size and (d) thickness of InSe nanosheets synthesized via In^{3+} exchange with Cr_3Se_4 nanoplates. (e) lateral size and (f) thickness of In_2Se_3 nanosheets synthesized via In^{3+} exchange with Cr_3Se_4 nanoplates. (g) lateral size and (h) thickness of InSe nanosheets synthesized via In^{3+} exchange with Cr_3Se_4 nanoplates. (g) lateral size and (h) thickness of InSe nanosheets synthesized via In^{3+} exchange with Cr_3Se_4 nanoplates. (g) lateral nanoplates and (h) thickness of InSe nanosheets synthesized via In^{3+} exchange with Cr_3Se_4 nanoplates.

Fig. S10. Structural models of InSe and In_2Se_3 after CE reaction of In^{3+} with Cr-Se NCs.