Supplementary Information for

Enhanced Stability and Optical Performance of CsPbBr₃@FAPbBr₃ Core– Shell Perovskite Nanocrystals

Danila A. Tatarinov, Azat O. Ismagilov, Aleksandra V. Koroleva, Evgeniy V. Zhizhin, Weitao Zheng, Aleksander V. Baranov, and Aleksandr P. Litvin*

E-mail: litvin@jlu.edu.cn

Perovskite NC Molar Concentration and Multiphoton Absorption Cross-Section Calculations

These calculations were adapted from a previous reported procedure.¹ The perovskite NC extinction coefficient (ε) at 400 nm was calculated from the following equation:

$$0\mu = \frac{D}{C_M l} = \frac{m_{NC} D}{C_{mass} l} = \frac{N_A B \in M V_{NC} B \in M \Pi \Gamma D}{C_{mass} l},$$
(S1)

where *D* is the absorbance of the sample at 400 nm; C_M is NC molar concentration; *l* is cuvette length; m_{NC} is molar mass of the single NC; C_{mass} is mass concentration; N_A is the Avogadro number; V_{NC} is NC volume (determined from the NC size); ρ is the NC density. NC density was calculated by normalizing the crystalline cell mass to the cell volume:

$$\Pi \acute{\Gamma} = \frac{m_{cell}}{V_{cell}} = \frac{m_{cell}}{r^3},$$
 (S2)

where m_{cell} and V_{cell} are the respective cell mass and cell volume, r is the edge length, determined from TEM (see Figure 1c,d). Cell mass was calculated from known NC stoichiometry. Mass concentration of the solution was determined from the weight of thoroughly washed and dried NCs.

Concentrations of NCs and Rhodamine 6G were determined from Beer's law. For Rhodamine 6G, the known extinction coefficient (~40,000 mol⁻¹cm⁻¹) at 500 nm was used.^{2,3}

Rhodamine 6G in ethanol was used as a standard for calculating the 2PA cross section. The cross section of Rhodamine 6G was taken to be 128 ± 84 GM ($10^{-50} \cdot \text{cm}^{-4} \cdot \text{s} \cdot \text{photon}^{-1}$), as averaged from the literature data (obtained at 800 nm with a pulse duration of 100 fs).^{4–6} To estimate the 2PA cross section, the PL was first measured under single-photon excitation. The PL was measured relative to the standard rhodamine 6G in ethanol (PL ~0.9). The PL quantum yield was calculated using equation S3:

$$\Pi \dagger_{s} = \Pi \dagger_{r} \frac{I_{s} D_{r}}{I_{r} D_{s}} \left(\frac{n_{r}}{n_{s}}\right)^{2},$$
(S3)

where φ is the PL quantum yield under one-photon excitation; *I* is the area of the PL spectra, *D* is the optical density at the excitation wavelength, n is the refractive index of the solution; the indices *r* and *s* represent the values for the referent standard and sample, respectively.

Then the 2PA cross section was calculated using equation S4:

$$\Pi \acute{r}_{s}^{2PA} \mathbf{O}_{s} = \Pi \acute{r}_{r}^{2PA} \mathbf{O}_{r} \frac{\Pi \dagger_{r} I_{s}^{2P} C_{r} n_{r}}{\Pi \dagger_{s} I_{r}^{2P} C_{s} n_{s}},$$
(S4)

where σ^{2PA} is the 2PA cross section (in GM); φ is the one-photon excited PL; η is the two-photon excited PL; I^{2P} is the area of the two-photon excited PL spectra, *C* is the concentration (in M), *n* is the refractive index of the solution; the indices r and s represent the values for the referent standard and sample, respectively. Provided that $\varphi = \eta$ the equation can be rewritten as follows:

$$\Pi \acute{r}_{s}^{2PA} = \Pi \acute{r}_{r}^{2PA} \frac{\Pi \dagger_{r} I_{s}^{2P} C_{r} n_{r}}{\Pi \dagger_{sI}_{r}^{2P} C_{s} n_{s}},$$
(S5)

Supplementary Figures

Figure S1. HR-TEM images TEM images of CsPbBr₃@FAPbBr₃ with estimated interplanar distances and FAPbBr₃ shell thickness.

Figure S2. Survey XPS spectra for the CsPbBr₃ core (red) and CsPbBr₃@FAPbBr₃ core-shell (blue) NCs.

Figure S3. XPS C 1s spectra of CsPbBr₃ core (red) and CsPbBr₃@FAPbBr₃ core-shell (blue) NCs after the peak calibration.

Figure S4. Tauc plots for the CsPbBr₃ core (red), CsPbBr₃@FAPbBr₃ core-shell (green), FAPbBr₃ (blue) NCs. The bandgaps were determined by finding the point where the linear fit of the slope intersects with the zero line.

Figure S5. UPS spectra for the cutoff (left) and valence (right) regions for (a) CsPbBr₃ core, (b) CsPbBr₃@FAPbBr₃ core-shell, (c) FAPbBr₃ NCs.

Figure S6. Absorption and PL spectra of CsPbBr₃ core (red) and CsPbBr₃@FAPbBr₃ core-shell NCs synthesized with oleylamine (blue) and octylamine (green).

Figure S7. Absorption and PL spectra of CsPbBr₃ core (red) and CsPbBr₃@FAPbBr₃ core-shell NCs synthesized with oleylamine (blue) and octylamine (green).

Figure S8. Reproducibility of (a) PL Peak position and (b) PL FWHM of CsPbBr₃@FAPbBr₃ core-shell NCs synthesized with octylamine.

Figure S9. Comparison of XRD patterns obtained for the CsPbBr₃ (red) and CsPbBr₃@FAPbBr₃ (blue) NCs after being stored for 2 months.

Figure S10. Comparison of absorption (a) and PL (b) spectra of CsPbBr₃ core (red) and CsPbBr₃@FAPbBr₃ core-shell NCs synthesized at 80°C (blue) and 100°C (green) after being stored for 2 months.

Figure S11. The photo- (a) and thermostability (b) of the PL spectra for FAPbBr₃ NCs.

Figure S12. Comparison of the stability for the SiO₂-coated CsPbBr₃@FAPbBr₃ core-shell NCs at various pH values (upper panel) and in various solvents (bottom panel). The bar graphs represent the remaining PL intensity after 120 and 240 min in the corresponding solvents.

Supplementary Tables

Sample	Intensity- averaged PL lifetime, ns	A ₁ (kCnts)	$ au_{ m l},$ ns	A ₂ (kCnts)	$ au_2,$ ns	A ₃ (kCnts)	$ au_3$, ns
CsPbBr ₃	13.1 ± 0.5	$0.824 \pm$	1.68 ± 0.06	$0.013 \pm$ 0.002	49.00 ±	$0.164 \pm$	6.51 ± 0.23
		0.004		0.002	5.71	0.002	
CsPbBr ₃ @	20.5 ± 0.3	0.819 ±	0.00 ± 0.10	$0.181 \pm$	$35.00 \pm$	0	0
FAPbBr ₃	20.5 ± 0.5	0.008	9.00 ± 0.19	0.008	0.67	0	0
	17.4 + 0.2	$0.434 \pm$	12.00 ±	0.013 ±	$71.00 \pm$	$0.552 \pm$	261012
FAPbBr ₃	17.4 ± 0.3	0.005	0.24	0.001	4.31	0.009	3.6 ± 0.13

Table S1. The results of the fitting of PL decay curves recorded for CsPbBr3 core andCsPbBr3@FAPbBr3 core-shell NCs.

Table S2. Reported values of 2PA cross-section (σ^{2PA}) for CsPbBr₃ nanocrystals (NCs), nanoplatelets (NPs), nanorods (NRs), and nanowires (NWs).

			Volume			
Samula	Size (nm)	σ^{2PA}	Normalized	Technique (pulse duration,	Def	
Sample	Size (IIII)	(GM)	σ^{2PA}	repetition rate, ex. wavelength)	Kel.	
			GM×nm ⁻³)			
CsPbBr ₃	20	2 68×104	1.6	2DDI (100 for 1 kHz 800 nm)	7	
NCs	20	5.08~10*	4.0	2FFL (100 18, 1 KHZ, 800 IIII)		
CsPbBr ₃	25	9.5×104	5 4 4	Z-scan (100 fs, 80 MHz, 800	8	
NCs	23	8.3~10*	5.44	nm)	U U	
CsPbBr ₃	7.2	1.2×105	208	Z-scan (100 fs, 1 kHz, 720-	9	
NCs	7.5	1.2~10°	308	1200 nm)	-	
CsPbBr ₃	20	1.4×105	17.5	Z-scan (— fs, 1 kHz, 790-925	10	
NCs	20	1.4^10*	17.3	nm)		
CsPbBr ₃	7	1.8×105	525	Z-scan (100 fs, 1 kHz, 700-	11	
QDs	1	1.0~10	525	1500 nm)		
CsPbBr ₃	200×10	2 1×105	105	Z-scan (100 fs, 80 MHz, 800	8	
NRs	200~10	2.1710	105	nm)		
CsPbBr ₃	12.4	2.2×10^{5}	115	7_{-scan} (fs 1 kHz 800 nm)	12	
QDs	12.7	2.2~10	115	<i>L</i> -scall (- 15, 1 K112, 600 IIII)		
CsPbBr ₃	10.4×7.8×1.8	2 28×10 ⁵	1562	Z-scan (100 fs, 1 kHz, 720-	9	
NPls	10.7~/.0~1.0	2.20~10	1302	1200 nm)		
CsPbBr ₃	12.4	$(3.2+1.0)\times10^{5}$	171+112	2PPL (30 fs $800-1300$ nm)	1	
NCs	12.7	(3.2+1.7)~10*	1/1-112	211 L (50 15, 000-1500 IIII)		

CsPbBr ₃ NPls	20×4×20	4.9×10 ⁵	306	Z-scan (100 fs, 80 MHz, 800 nm)	8
CsPbBr ₃ NCs	12	9.8×10 ⁵	567	Z-scan (70 fs, 1 kHz, 800 nm)	13
CsPbBr ₃ NCs	9	1.0±0.2×10 ⁶	1372±274	Z-scan (50 fs, 1 kHz, 675-1000 nm)	14
CsPbBr ₃ NRs	61.3*11.6	1.5×10^{6}	221	Z-scan (100 fs, 1 kHz, 800- 1300 nm)	15
CsPbBr ₃ NCs	9	2.7×10 ⁶	3704	Z-scan (90 fs, 1 k Hz, 800 nm)	16
CsPbBr ₃ NCs	8.3	2.7×10 ⁵	472	2PPL (30 fs, 800-1300 nm)	This work
CsPbBr ₃ @ FAPbBr ₃ NCs	11.2	1.3×10 ⁶	996	2PPL (30 fs, 800-1300 nm)	This work

Table S3. Comparison of stability in water for perovskite-based composite materials, according to literature data.

Materials	Synthesis method	PL peak posi- tion	PL QY (non- polar solvent)	Size	PL stability	Applica- tion	Year	Ref.
CsPbI ₃ @ 3IS @SiO ₂ phospholipid micelles	Two-step passivation with 3IS	680 nm	91%	16 nm	45% after 6h (H ₂ O)	Bio- Imaging	2022	17
CsPbBr ₃ -SiO ₂ composites	Two-step hydrolysis of PH-TMOS	521 nm	65%	13 nm	62% PL retention after 30 min (hexane/ethanol mixture)	N/A	2021	18
CsPbBr ₃ /mSiO ₂ composites	LARP	510 nm	90%	10 nm	50% after 35 days (H ₂ O)	LEDs	2020	19
CsPbBr ₃ /mSiO ₂ nanocomposites	<i>in situ</i> template- assisted synthesis	514 nm	63%	150 nm	100% after 50 days (H ₂ O)	Biosens- ing	2024	20
CsPbBr ₃ -SiO ₂ composites	One-step <i>in-situ</i> synthesis and encapsulation method	520 nm	84.7%	Thin films with 34.7 nm crystals	>60% for 1100 h (H ₂ O)	N/A	2023	21

CsPbBr ₃ / SiO ₂ nanocrystals	RT synthesis and SiO ₂ encapsulation	520 nm	N/A	140 nm	98.3% after 168 h (H ₂ O)	PL sensing	2022	22
CsPbBr ₃ QDs/MSs	High temperature solid phase melting method	520 nm	N/A	500 nm	80% for 2 weeks (H ₂ O)	WLEDs	2022	23
CsPbBr ₃ / SiO ₂ composites	Molten salts synthesis approach	520 nm	89 ± 10%	0.6 µm	95% after 30 days (H ₂ O)	WLEDs	2021	24
DDAB- CsPbBr ₃ / SiO ₂ QDs composites	Silica-coating at room temperature	520 nm	80%	N/A	50% after 210 min (H ₂ O)	WLEDs	2021	25
CsPbBr ₃ / polymer microspheres	Encapsulation in microspheres	520 nm	N/A	285 nm	100% after 28 days (H ₂ O)	Detectors	2021	26
CsPbBr3-SiO2 powders	Encapsulating derived from molecular sieve templates at high temperature	520 nm	63%	Pore size 3.6 nm length N/A	100% after 50 days (H ₂ O)	LEDs	2020	27
CsPbBr ₃ /mSiO ₂ composites	Hot injection <i>in situ</i> growth in m-SiO2 matrix	520 nm	68%	400 nm	80% after 120 h (H ₂ O)	Flexible LEDs	2019	28

CsPbBr ₃ /mSiO ₂ composites	HI+ SiO ₂ coating with MPTMS	525 nm	80%	150 nm	80% after 13 h (H ₂ O)	TPA- excited PL	2020	29
CsPbX ₃ @SiO ₂ nanocomposites	HI+ SiO ₂ coating with TEOS	410- 680 nm	9%- 84%	100 nm	60%-95% after 30 days (H ₂ O)	LEDs and cell imaging	2018	30
APbX ₃ /meso- SiO ₂	<i>in situ</i> template- assisted synthesis	480- 620 nm	48%- 90%	Pore size 2.5-7 nm, length N/A	N/A	N/A	2016	31
CsPbX ₃ /meso- SiO ₂ spheres	NCs encapsulation	450- 640 nm	≤55%	N/A	N/A	WLEDs	2016	32
FAPbI ₃ @ SiO ₂ composites	LARP+ TOPO	770 nm	72%	15 nm	80% after 28 days (atmosphere)	LEDs	2023	33
CsPbI ₃ @SiO ₂ composites	HI+ SiO ₂ coating	660 - 680nm	97.5%	10.07± 0.93 nm	79% PL retention after 40 min (ethanol)	NIR LEDs	2023	34
CsPbI ₃ @SiO ₂ nanocomposites	HI+ SiO ₂ coating with APTES	697 nm	N/A	13 nm	95% after 48 h (H ₂ O)	LEDs	2019	35
FAPbI3@ TEOS	LARP+ TEOS	770 nm	57.2%	15.17 nm	80% PL retention after 7 days (Toluene/DI H ₂ O)	NIR LEDs	2023	36
MAPbBr _x I _{x-3} / meso-SiO ₂	<i>in situ</i> template- assisted synthesis	500- 800 nm	≤5.5%	Pore size 3.3-7.1 nm, length N/A	N/A	Solid- state LEDs	2016	37

FAPbI₃@ APTES	LARP+ APTES	770 - 810nm	58%	16.8 nm	30% PL retention after 380 min (Toluene/DI H ₂ O)	NIR LEDs	2021	38
CsPbBr3@ FAPbBr3@ SiO ₂ NCs	HI+ SiO ₂ coating with MPTMS	525 nm	93%	11.2 nm	90% after 240 min (H ₂ O) 81% after 240 min (isopropanol)	TPA- excited PL	2025	This work

References

- I. D. Skurlov, W. Yin, A. O. Ismagilov, A. N. Tcypkin, H. Hua, H. Wang, X. Zhang, A. P. Litvin and W. Zheng, *Nanomaterials*, 2022, 12, 1–16.
- P. C. Beaumont, D. G. Johnson and B. J. Parsons, J. Chem. Soc. Faraday Trans., 1993, 89, 4185.
- 3 D. N. Dempster, T. Morrow and M. F. Quinn, J. Photochem., 1973, 2, 343–359.
- 4 R. Kapoor, C. S. Friend and A. Patra, J. Opt. Soc. Am. B, 2003, 20, 1550.
- 5 M. A. Albota, C. Xu and W. W. Webb, *Appl. Opt.*, 1998, **37**, 7352.
- 6 A. Fischer, C. Cremer and E. H. K. Stelzer, *Appl. Opt.*, 1995, **34**, 1989.
- 7 W. Chen, S. Zhang, M. Zhou, T. Zhao, X. Qin, X. Liu, M. Liu and P. Duan, J. Phys. Chem. Lett., 2019, 10, 3290–3295.
- 8 A. Pramanik, S. Patibandla, Y. Gao, K. Gates and P. C. Ray, *JACS Au*, 2021, 1, 53–65.
- 9 T. He, J. Li, X. Qiu, S. Xiao, C. Yin and X. Lin, *Adv. Opt. Mater.*, 2018, **6**, 1800843.
- J. Szeremeta, M. A. Antoniak, D. Wawrzyńczyk, M. Nyk and M. Samoć, *Nanomaterials*, 2020, 10, 1054.
- A. Pramanik, K. Gates, Y. Gao, S. Begum and P. Chandra Ray, J. Phys. Chem. C, 2019, 123, 5150–5156.
- 12 Q. Han, W. Wu, W. Liu, Q. Yang and Y. Yang, Opt. Mater. (Amst)., 2018, 75, 880–886.
- 13 K. N. Krishnakanth, S. Seth, A. Samanta and S. V. Rao, *Opt. Lett.*, 2018, 43, 603.
- 14 W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N.

Mathews and T. C. Sum, Nat. Commun., 2017, 8, 15198.

- 15 J. Li, Q. Jing, S. Xiao, Y. Gao, Y. Wang, W. Zhang, X. W. Sun, K. Wang and T. He, J. Phys. Chem. Lett., 2020, 11, 4817–4825.
- 16 Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang and M. Xiao, *J. Am. Chem. Soc.*, 2016, **138**, 3761–3768.
- W. Song, D. Wang, J. Tian, G. Qi, M. Wu, S. Liu, T. Wang, B. Wang, Y. Yao, Z. Zou and
 B. Liu, *Small*, 2022, 18, 2204763.
- 18 M. Li, X. Zhang and P. Yang, *Nanoscale*, 2021, **13**, 3860–3867.
- 19 M. Kim, J. H. Kim, M. Kim, C. S. Kim, J. W. Choi, K. Choi, J. H. Lee, J. Park, Y.-C. Kang, S.-H. Jin and M. Song, *J. Ind. Eng. Chem.*, 2020, 88, 84–89.
- 20 T. Gu, J. Zhong, M. Ge, R. Shi, L. He and P. Bai, J. Colloid Interface Sci., 2024, 657, 580–589.
- J. Park, K. Y. Jang, S. H. Lee, D.-H. Kim, S.-H. Cho and T.-W. Lee, *Chem. Mater.*, 2023, 35, 6266–6273.
- X. Feng, X. Zhang, J. Huang, R. Wu, Y. Leng and Z. Chen, *Anal. Chem.*, 2022, 94, 5946–5952.
- 23 T. Yang, Y. Zhu, X. Yang and J. Shen, Adv. Mater. Interfaces, 2022, 9, 2200571.
- 24 M. N. An, S. Park, R. Brescia, M. Lutfullin, L. Sinatra, O. M. Bakr, L. De Trizio and L. Manna, ACS Energy Lett., 2021, 6, 900–907.
- X. Li, W. Cai, H. Guan, S. Zhao, S. Cao, C. Chen, M. Liu and Z. Zang, *Chem. Eng. J.*, 2021, 419, 129551.
- 26 J. An, M. Chen, G. Liu, Y. Hu, R. Chen, Y. Lyu, S. Sharma and Y. Liu, Anal. Bioanal. Chem., 2021, 413, 1739–1747.
- Q. Zhang, B. Wang, W. Zheng, L. Kong, Q. Wan, C. Zhang, Z. Li, X. Cao, M. Liu and L. Li, *Nat. Commun.*, 2020, 11, 31.
- 28 P. Chen, Y. Liu, Z. Zhang, Y. Sun, J. Hou, G. Zhao, J. Zou, Y. Fang, J. Xu and N. Dai, *Nanoscale*, 2019, **11**, 16499–16507.
- 29 S. Li, D. Lei, W. Ren, X. Guo, S. Wu, Y. Zhu, A. L. Rogach, M. Chhowalla and A. K.-Y. Jen, *Nat. Commun.*, 2020, **11**, 1192.

- 30 N. Ding, D. Zhou, X. Sun, W. Xu, H. Xu, G. Pan, D. Li, S. Zhang, B. Dong and H. Song, Nanotechnology, 2018, 29, 345703.
- D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N.
 P. Stadie and M. V. Kovalenko, *Nano Lett.*, 2016, 16, 5866–5874.
- 32 H. Wang, S. Lin, A. Tang, B. P. Singh, H. Tong, C. Chen, Y. Lee, T. Tsai and R. Liu, *Angew. Chemie Int. Ed.*, 2016, **55**, 7924–7929.
- W. L. Huang, W. H. Liao and S. Y. Chu, ACS Appl. Mater. Interfaces, 2023, 15, 41151–
 41161.
- 34 Z. Pan, X. Zhu, T. Xu, Q. Xie, H. Chen, F. Xu, H. Lin, J. Wang and Y. Liu, *Appl. Sci.*, 2023, 13, 7529.
- 35 Z. Zheng, L. Liu, F. Yi and J. Zhao, J. Lumin., 2019, 216, 116722.
- 36 W.-L. Huang and S.-Y. Chu, Ceram. Int., 2023, 49, 15802–15810.
- 37 V. Malgras, S. Tominaka, J. W. Ryan, J. Henzie, T. Takei, K. Ohara and Y. Yamauchi, J. Am. Chem. Soc., 2016, 138, 13874–13881.
- 38 L.-C. Chen, L.-W. Chao, C.-Y. Xu, C.-H. Hsu, Y.-T. Lee, Z.-M. Xu, C.-C. Lin and Z.-L. Tseng, *Biosensors*, 2021, 11, 440.