Supporting Information

Unraveling the Infrared Detection Properties of Bi₂Te₃ Depending on

Thickness from Semiconductor to Metal Surface States

Qijun Kao^{a#}, Yongfeng Jia^{d#}, Zhihao Wu^a, Zhangxinyu Zhou^a, Xun Ge^b, Jian Peng^a, Piotr Martyniuk^e, Jin Wang^{b, c*}, Chuanbin Wang^{a*}, Fang Wang^{b*}

The R and D* of all Bi_2Te_3 samples gradually decrease as the light intensity increases, demonstrating that the device performs better under lower light intensity detection.

S1. Dependence curves of R and D* on incident light power.

^a State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

^b Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200080, China

^c MOE Key Laboratory of Advanced Micro-Structure Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineer, Tongji University, Shanghai 200092, China

^d School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China

^e Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland

[#] These authors contributed equally to this work.

S2. Time cycle curves of Bi₂Te₃ thin films under different light powers (a) 180 P, (b)240 P, (c)

360 P, (d) 420 P.

S3. Response time of Bi₂Te₃ films (a) 180P, (b) 240P (c) 360P (d) 420 P.

S4. Schematic diagram of the electrode of Bi_2Te_3 thin film.

The XPS spectra of Bi and Te were measured, revealing that Bi_2Te_3 underwent slight oxidation. The presence of oxygen caused ionization and dissociation during the photoelectric process, which prolonged the response time.

S5. XPS analysis spectra of Te 3d, and Bi 4f.