Supporting Information

One-pot synthesis of long-range aligned nanochannels for Li-ion transfer pathways

Zehan Chen^a, Isaac Alvarez Moises^a, Ruth Bruker^b, He Jia^a, Shanshan Yan^a, Yinghui Zhang^a, Zhenni He^a, Kejie Zhou^c, Sorin Melinte^c, Laurent Rubatat^d, Klaus Meerholz^b, Jean-François Gohy^{a,*}

^{*a*} Institute of Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter (BSMA), Université catholique de Louvain, Place L. Pasteur, 1, 1348, Louvain-la-Neuve, Belgium

^b Institut für Physikalische Chemie, Department für Chemie, Universität zu Köln, Greinstraße 46, D-50939, Köln, Germany

^c Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Electrical Engineering (ELEN), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium

^d Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France

*Email: jean-francois.gohy@uclouvain.be (Jean-François Gohy)

Contents			
1 Figures3			
Figure S1			
Figure S24			
Figure S35			
Figure S46			
Figure S5			
Figure S610			
2 Tables11			
Tables S111			
Tables S212			
3 Supporting References13			

1 Figures

Figure S1. Molar mass distribution of Pluronic F127 as measured by gel permeation chromatography.

Figure S2. SEM image of calcined F127-channel-aligned-1/16DCD-1/20LiClO₄ sample (with an inset of structure diagram).

Figure S3. Electrochemical impedance spectroscopy (EIS) plots of F127-channel-aligned- $1/16DCD-1/20LiClO_4$ (A.1 and A.2) and F127-random-structure- $1/16DCD-1/20LiClO_4$ (B.1 and B.2), assembled in a symmetric stainless-steel (SS) configuration, measured in the temperature range of 90 to 20 °C. The thickness of each sample is indicated in the upper left corner, and the disc-shaped SPE sample has a constant diameter of 1.58 cm.

Figure S4. EIS plots of F127-channel-aligned-1/16DCD-1/25LiClO₄ (A.1 and A.2), F127-

channel-aligned-1/16DCD-1/15LiClO₄ (B.1 and B.2), F127-channel-aligned-1/16DCD-1/10LiClO₄ (C.1 and C.2) and F127-channel-aligned-1/16DCD-1/8LiClO₄ (D.1 and D.2), assembled in a symmetric SS configuration, measured in the temperature range of 90 to 20 °C. The thickness of each sample is indicated in the upper left corner, and the disc-shaped SPE sample has a constant diameter of 1.58 cm.

Figure S5. EIS plots of F127-channel-aligned-0DCD-1/20LiClO₄ (A.1 and A.2), F127-channelaligned-1/64DCD-1/20LiClO₄ (B.1 and B.2), F127-channel-aligned-1/32DCD-1/20LiClO₄ (C.1 and C.2), F127-channel-aligned-1/8DCD-1/20LiClO₄ (D.1 and D.2) and F127-channel-aligned-1/4DCD-1/20LiClO₄ (E.1 and E.2), assembled in a symmetric SS configuration, measured in the

temperature range of 90 to 20 °C. The thickness of each sample is indicated in the upper left corner, and the disc-shaped SPE sample has a constant diameter of 1.58 cm.

Figure S6. DSC curve of F127-aligned channel-0DCD-1/20LiClO₄.

2 Tables

Tables S1. Comparison of the ionic conductivity of various solid electrolytes equipped with ionic transfer pathways.

Ref	Sample	Formation of Li ⁺ pathway	Ionic conductivity (S/cm)	Temperature (°C)
This work	F127-aligned channel-1/16DCD- 1/20LiClO ₄ solid electrolyte	Aligned channels by F127-based micelles	1.65×10^{-4}	20
1	PEO-MUSiO ₂ composite polymer electrolyte	~12 nm SiO ₂	4.4×10^{-5}	30
2	Polyimide/PEO/LiTFSI solid polymer electrolyte	Nanoporous polyimide film	2.3×10^{-4}	30
3	SiO ₂ -PEO-LiTFSI electrolyte	SiO ₂ nanofibre framework	1.3×10^{-4}	30
4	LLTO-PAN-LiClO ₄ electrolyte	Aligned LLTO nanowires	6.05 × 10 ⁻⁵	30
5	P-P-A@=SiO ₂ solid polymer electrolyte	Modified nanosilica	2.6 × 10 ⁻⁴	RT
6	Composite solid-state polymer electrolyte based on ceramic nanowires	Ceramic nanowires	10-3-10-5	RT
7	PEO-100ZrO ₂ @ ionic liquids	Framework of ZrO ₂ loading ionic liquids	4.06 × 10 ⁻⁴	60
8	LLTO nanotubes/PAN composite solid electrolyte	LLTO nanotubes	3.6×10^{-4}	RT
9	Polyamide/PEO/LiTFSI electrolyte	Porous polyamide film	2.05 × 10 ⁻⁴	30

Tables S2. thermodynamic properties characterized by DSC about F127-aligned channel-0DCD-1/20LiClO₄.

Samples	T _g (°C)		T (°C)
Samples	T _{g, 1}	T _{g, 2}	1 _m (C)
F127-aligned channel-0DCD-1/20LiClO ₄	-63.5	-49.0	39.0

3 Supporting References

- 1 D. Lin, W. Liu, Y. Liu, H. R. Lee, P.-C. Hsu, K. Liu and Y. Cui, *Nano Lett.*, 2016, **16**, 459–465.
- J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X. Zhang,
 L. Zong, J. Wang, L.-Q. Chen, J. Qin and Y. Cui, *Nat. Nanotechnol.*, 2019, 14, 705–711.
- 3 S. Liu, H. Shan, S. Xia, J. Yan, J. Yu and B. Ding, *ACS Appl. Mater. Interfaces*, 2020, **12**, 31439–31447.
- 4 W. Liu, S. W. Lee, D. Lin, F. Shi, S. Wang, A. D. Sendek and Y. Cui, *Nat. Energy*, 2017, 2, 17035.
- 5 X. Cai, J. Ding, Z. Chi, W. Wang, D. Wang and G. Wang, ACS Nano, 2021, 15, 20489–20503.
- 6 L. Zhang, H. Gao, S. Xiao, J. Li, T. Ma, Q. Wang, W. Liu and S. Wang, ACS Mater. Lett., 2022, 4, 1297–1305.
- 7 Y. Liang, N. Chen, W. Qu, C. Yang, L. Li, F. Wu and R. Chen, ACS Appl. Mater. Interfaces, 2021, 13, 42957–42965.
- 8 S. Hu, L. Du, G. Zhang, W. Zou, Z. Zhu, L. Xu and L. Mai, *ACS Appl. Mater. Interfaces*, 2021, 13, 13183–13190.
- 9 Y. Xu, S. Zhang, T. Liang, Z. Yao, X. Wang, C. Gu, X. Xia and J. Tu, ACS Appl. Mater. Interfaces, 2021, 13, 11018–11025.