Electronic Supplementary Information for:

Tuning the Electronic Properties of ZnO Nanofilms via Straininduced Structural Phase Transformations and Quantum Confinement

Raul Morales-Salvador¹, Ilker Demiroglu², Francesc Viñes¹, Stefan T. Bromley^{*1,3}

¹ Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028 Barcelona, Spain.

² Department of Advanced Technologies, Eskisehir Technical University, 2 Eylül kampüsü, 26555 Eskişehir, Turkey

³ Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona (Spain).

*Corresponding author: s.bromley@ub.edu

S1. Convergence tests.

- **S2.** Comparison between PBE and PBE0
- S3. Out-of-plane Zn-Zn interactions

S1. Convergence tests.

DFT calculations were performed using a 500 eV plane wave energy cut-off and a force convergence criterion of 0.01 eV Å⁻¹. Increasing the cut-off to 600 eV for nanofilms of both BCT-ZnO and hex-ZnO polymorphs result in a variation of total energy of less than 3×10^{-3} eV/ZnO. Increasing the force convergence criterion for optimisations to 1E-5 eV Å⁻¹ led to variations in total energy of less than 5×10^{-7} eV/ZnO.

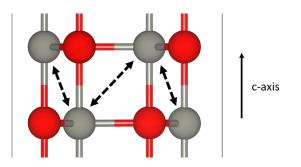
The variation in total energy with respect to the **k**-point grid settings employed in the current study are summarised in tables S1 and S2 below.

	k-point grid setting							
	2×2×1	3×3×1	4×4×1	5×5×1	7×7×1	9×9×1		
ΔE_{ZnO} (eV/ZnO) -	>0.01	Current	>5×10 ⁻⁵					
optimisations		work						
ΔE_{ZnO} (eV/ZnO) - single						Currrent		
point calculations on				>5×10 ⁻⁵ >	>5×10⁻⁵	work		
optimised structures						WUIK		

Table S1. Difference in total energy for the 5L BCT-ZnO nanofilm with 0% strain with respect to k-point mesh settings. The energy obtained using settings employed in the current work are taken as a reference.

	k-point grid setting							
	2×2×1	3×3×1	4×4×1	5×5×1	7×7×1	9×9×1		
ΔE_{ZnO} (eV/ZnO) -	>0.01	Current	>5×10 ⁻⁵					
optimisations		work						
ΔE_{ZnO} (eV/ZnO) - single						Current		
point calculations on				>5×10 ⁻⁵ >	>5×10⁻⁵	work		
optimised structures						WUIK		

Table S2. Difference in total energy for the 5L hex-ZnO nanofilm with +7% strain with respect to k-point mesh settings. The energy obtained using settings employed in the current study are taken as a reference.


S2. Comparison between PBE and PBE0

We compare the variation in total energy of a 5L nanofilm using both PBE-based DFT calculations (as employed in the current work) and calculations using the hybrid PBE0¹ functional for a range of in-plane strains. The PBE0-based calculations used the FHI-AIMS² all-electron DFT code with a Tier1/light atom-centred numerical basis set. Between strains of -8 and +4% we see a small difference of $\leq 0.02 \text{ eV/ZnO}$ between the two sets of calculations. For the highest compressive strain this difference slightly increases to 0.04 eV/ZnO. Overall, the predicted energetic trends are very similar when employing both functionals.

Strain (%)	-8	-2	+3	+4	+9
$\Delta E_{ m BCT-ZnO}$ (eV/ZnO) PBE0	0.16	0.00	0.05	0.05	0.11
$\Delta E_{ m BCT-ZnO}$ (eV/ZnO) PBE	0.18	0.01	0.03	0.04	0.15
ΔE (PBE-PBEO)	0.02	0.01	-0.02	-0.01	0.04

Table S3. Variance in total energy of 5L nanofilms for a range of in-plane strains with respect to that of bulk BCT-ZnO ($\Delta E_{BCT-ZnO}$) calculated using: i) the PBE-based computational set-up described in in the current work, and ii) using calculations employing the hybrid PBEO functional.

S3. Out-of-plane Zn-Zn interactions

Figure S1. Out-of-plane Zn-Zn interactions (dashed arrows) giving rise to Zn4s-Zn4s bonding orbital overlap in the layered-ZnO and hex-ZnO nanofilms.

References

^{1.} C. Adamo, V. Barone, Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. *The Journal of Chemical Physics* 1999, **110**, 6158–6170.

^{2.} V. Blum, R. Gehre, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, Ab initio molecular simulations with numeric atom-centered orbitals, *Comput. Phys. Commun.*, 2009, **180**, 2175–2196.