Supporting Information

First-Principles Unraveling of Structure-Catalytic Activity Nexus and Mechanistic of δ -MnO₂-Supported Metal Cluster Catalystst in Ambient Temperature Benzene to CO₂ Degradation

Jiangmei Yan^a, Peng Zhang^a, Dan Chen^a, Jie Cheng^a, Mengshan Song^b, Shuai Li^b, Hui Zhao^b, Guo Chang^b,

Yuefeng Li^a, Lihui Zeng^a, Ruqian Lian^c, Chuangwei Liu^{*d}, Wangtu Huo^{*b}, Dongxiao Kan^{*b}

^aKaili Catalyst & New Materials Co., Ltd, Xi' an, 710201, China

^bNorthwest Institute for Non-ferrous Metal Research, Xi' an, 710016, China

^cHebei Research Center of the Basic Discipline for Computational Physics College of Physics Science and

Technology, Hebei University, Baoding 071002, P. R. China

^dDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China

*Corresponding Author: dxkan1202@126.com; cwliu@dicp.ac.cn; rqlian@126.com;

huowangtu_1988@163.com

Figure S1 Two distinct positions of single metal loading on the δ -MnO₂(001) surface, designated as "a site" and "b site".

Figure S2 Thermodynamic stabilities of the 12 single-atom catalysts (SACs) at 300 K following 5 ps of molecular dynamics simulation.

Figure S3 Structural stabilities of the 23 types of trimers after optimization.

Figure S4 Energy-time curve and structures obtained from molecular dynamics simulations at room temperature over a duration of 5 ps.

Figure S5 Energy-time curve and structures obtained from molecular dynamics simulations for δ -MnO₂-M₃ at room temperature over a duration of 50 ps.

Figure S6 Two possible configurations of tetramers: $cluster_4$ -1, which is a tetrahedron, and $cluster_4$ -2, which is a parallelogram model..

Figure S7 Energy-time curve and structures obtained from molecular dynamics simulations for δ -MnO₂-M₄ at room temperature over a duration of 50 ps.

Figure S8 The phonon spectrum of $\delta\text{-MnO}_2\text{-}Ag_4,$ $\delta\text{-MnO}_2\text{-}Pd_4,$ and $\delta\text{-MnO}_2\text{-}Pt_4$

Figure S9 Adsorption energies and structures of O_2 molecule on the three possible sites of the benzene-adsorbed models.

Figure S10 Adsorption energies and structures of O atom on the three possible sites of the benzene-adsorbed models.

Figure S11 Gibbs free energies of the first step in benzene degradation, including the adsorbed benzene combined with O atom, combined with O_2 molecule, or dehydrogenation, respectively.

Reaction coordinate

Figure S12 Gibbs free energies of the adsorbed O_2 molecule abstracting an H from the adsorbed benzene and generating a pair of C_6H_5 and OOH molecules.

Reaction coordinate

Figure S13 Gibbs free energies of the second step in benzene degradation via the O atom combination path, including benzene dehydrogenated to form C_6H_5 + OH, and further oxygenation (addition of O₁) to form C_6H_6 + 2O and C_6H_6O + O, respectively.

Reaction coordinate

Figure S14 Gibbs free energies of the third step in benzene degradation via the O atom combination path, which consists of four possible routes: further oxygenation (addition of O_2) to form $C_6H_6O + OH$, $C_6H_5 + OH + O$, or $C_6H_4 + 2OH$, or dehydrogenation to form $C_6H_4 + H_2O$

Figure S15 Gibbs free energies of the fourth step in benzene degradation via the O atom combination path, which exhibits two courses: the third O (O₃) binding to Pt and generating $C_6H_5O + O + OH$, or connecting with benzene to form $C_6H_5O_2 + OH$.

Figure S16 Three possible sites (namely ortho, meta, and para sites) and corresponding adsorption energies of the O_3 attached to the adsorbed C_6H_5O molecule.

Figure S17 The projected density of states for δ -MnO₂-Ag₄, δ -MnO₂-Pd₄, and δ -MnO₂-Pt₄ before and after benzene adsorption.

Figure S18 The calculated work function values of δ -MnO₂-M₃ (Ag₃, Pd₃, Pt₃, Cu₃, Fe₃, Rh₃, Ru₃) and δ -MnO₂-M₄ (Ag₄, Pd₄, Pt₄).

Figure S19 (a) The d band center and (b) work function values of δ -MnO₂-M₃ (Ag₃, Pd₃, Pd₃, Pt₃, Cu₃, Fe₃, Rh₃, Ru₃) and δ -MnO₂-M₄ (Ag₄, Pd₄, Pt₄); (c) the electronegativities of the referred metals (Ag, Pd, Pt, Cu, Fe, Rh, Ru).