Effectively enhancing ion diffusion in superconcentrated ionic liquid electrolytes by co-solvent additives

Jhonatan Soto-Puelles^{1,3}, Luke A. O'Dell^{2,3}, M. C. Dilusha Cooray^{1,3}, Maria Forsyth^{1,3},

Fangfang Chen^{1,3}*

¹Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia

²Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia

³Future Battery Industries Cooperative Research Centre (FBICRC). Building 220, Brand Drive, Curtin University, Bentley WA 6102

Corresponding Author

* fangfang.chen@deakin.edu.au

SUPPLEMENTARY INFORMATION

Supplementary Information

 $E = \frac{abs(Experiment - Model)}{Experiment} 100\%$ for predicted and experimental

diffusivities (%) calculated at 80 °C.

	Li	FSI	N1113	Co-solvent
100IL	75	36	62	
20EC	42	9	14	8
20DME	36	15	42	23

Table S- 2: Donnor number and dielectric constant of EC and DME.

	Donnor number	Dielectric constant	
EC	16.3 ¹	89.8 ²	
DME	20.01	7.2 ²	

Table S- 3: Number of ions/molecules used in the simulations.

System	Li	FSI	N1113	EC	DME
100IL	320	640	320		
20EC	320	603	283	227	
20DME	320	603	283		222

Figure S-1: (a to d) Chemical structures of FSI, N1113, DME and EC.

Figure S- 2: (a) Li-EC and (b) Li-DME binding energies calculated using density functional theory at a B3LYP/6-31G(d,p) level of theory with Gaussian 09 software based on the equation Eb = E(Lisolvent)-E(Li)-E(solvent). Literature reports Eb's of -2.24 eV and -2.84 eV for Li-EC and Li-DME, respectively³.

Figure S- 3: (a) Fraction of EC that is not coordinated with Li at 5, 10 and 20 wt% EC concentrations.

Figure S- 4: (a and b) MSD functions for Li in full FSI shell (solid lines) and hybrid shells (dashed lines). The left and right plots correspond to the 20 wt% EC and the 20 wt% DME systems, respectively.

Figure S- 5: (a) Fraction of Li along with their solvation shell that are detached from the Li-FSI network for the 20 wt% EC and the 20 wt% DME systems. (b and c) Simulation snapshots that highlight Li that are detached from the Li-FSI network colored in red for 20EC and 20DME systems, respectively.

Figure S- 6: (a to c) Li-Li RDF's along with their integration curves, colored in red, for the 100IL, 20EC and 20DME systems, respectively. (d) Calculated average distance between Li and coordination number.

REFERENCES

- 1. J. Xu, J. Zhang, T. P. Pollard, Q. Li, S. Tan, S. Hou, H. Wan, F. Chen, H. He, E. Hu, K. Xu, X.-Q. Yang, O. Borodin and C. Wang, *Nature*, 2023, **614**, 694-700.
- 2. A. Ponrouch, E. Marchante, M. Courty, J.-M. Tarascon and M. R. Palacín, *Energy Environ. Sci.*, 2012, **5**, 8572-8583.
- 3. X. Chen, X. Q. Zhang, H. R. Li and Q. Zhang, *Batteries & Supercaps*, 2019, **2**, 128-131.