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3 Figure S1. Chemical structures of BBL (a) and gDPP-g2T (b).
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6 Figure S2. Plot of thickness of BBL and gDPP-g2T thin films with different
7 patterning precisions (Error bars represent the standard deviation of 3 data points).

8 The BBL and gDPP-g2T films hold average thicknesses of approximately 107 nm and
9 124 nm, respectively, under various /y;. Therefore, patterning precision would not
10 affect the thickness of the OMIECs, and it also indicates that the device performance

11 wvariation is due to different /.

12
13 Figure S3. Microscopic images of the BBL thin films with different patterning

14 precisions. (scale bar =50 pum)
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Figure S4. Transfer characteristics in log-scale (a) and linear scale (b) of BBL-based
VOECTs, where the block and dash curves represent the drain terminal set at the top

and bottom electrode, respectively.
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Figure S5. Schematics of comparing ion injection of precise pattern (a) and large
pattern (b) of a p-type accumulation-mode vOECT.

Taking a p-type accumulation-mode vVOECT as an example, when the negative gate
bias gradually increases, the stronger accumulation of ions at the semiconductor-
electrolyte interface of precisely patterned vOECT may result in stronger Coulombic
repulsion, affecting ion doping efficiency. Moreover, larger OMIEC introduces a
larger contact area between the electrodes and channel, leading to smaller inject
resistance, which could also facilitate the injection of ions and negatively shifted Vy,

for n-type transistors or positively shifted Vy, for p-type transistors.
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2 Figure S6. Schematic of a VOECT with redundant channel area and its spatial
3 coordinate system. Note that the model only considers the parts where OMIEC films
4 directly contacting electrodes (area 1-4), excluding the parts of 5-8.
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7 Figure S7. Simulation curves of the fringe electric field as a function of OMIEC

8 thickness d (a), source-drain voltage V) (b), and the fitting curve with Ejo<x2.
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11 Figure S8. Circuit diagram describing the current discrete model of OECT.
12 Tt shows a circuit diagram of the discrete model with the gate current branches I, Ip,
13 and Icy!. Based on this model, a dynamic model describing the source/drain current is

14 proposed.

s iD(t) = iCH(t) _fiG(t) (1)

y ()= —ip(®) - (-0 ()



1 fis a weighting factor, supposed to be related to the bias at drain/gate terminals and
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device symmetry? 3. At the off-state of VOECTS, pristine BBL exhibits the property of
an intrinsic semiconductor with a conductivity under 10712 S cm™'.# In this case, Icy
contributes little to Ip but dominated by I, It suggests that the drain current at off-
state (Iogr) exhibits a similar trend to Ig as ly increases regarding increasing parasitic

impedance.

Figure S9. Microscopic images of the BBL-based vVOECTs with 100 pm wide top

electrodes (scale bar =100 um).
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14 Figure S10. Transfer characteristics (Vp = 0.1 V) in log-scale (a) and linear scale (b),

15

and plots of g, (¢c) of BBL-based vVOECTs with top electrode width of 100 um. I, (d),

5
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gm (e), and Ly (f) of the BBL-based vOECTs.

BBL-based vOECTs with wider top electrodes (W = 100 um) are prepared (Figure
S9). Transfer characteristics are performed along with the extraction of several key
parameters, as shown in Figure S10. Compared to the vVOECT with a top electrode
width of approximately 30 um, the vVOECT with a top electrode width of 100 pm
exhibits about a threefold increase in I, and g;,,. As ly increases from 5 um to 100 pum,
Ion and g, of the VOECT increase from 1.14 mA and 4.27 mS to 2.01 mA and 7.21
mS, respectively. The parameters gradually reach a plateau as ly; increases to 60 pm,
exhibiting a similar trend to the devices with the narrower top electrode. However,
due to the larger area of top electrodes, the electrolyte-gold electrode contact area is
significantly large. I is adversely affected due to additional parasitic impedance,
resulting in high I at 108-107 A, which is an order of magnitude larger than the

narrower top OECTs.
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Figure S11. Microscopic images of the gDPP-g2T-based vOECTs with different
patterning precisions (scale bar =100 pm).
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2 Figure S12. Microscopic images of the gDPP-g2T thin films with different patterning
3 precisions. (scale bar =50 pm)
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7 Figure S13.

Ionic equivalent circuit of an ideal OECT (i) and an OECT with

8 considering its parasitic impedance (ii).
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10 Figure S14. EIS curves of the n-type vOECTs with different /,; (See Experimental for
11 detailed measurement setup).
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2 Figure S15. Plot of Rs(Cen+ Crr) as a function of Iy and the corresponding linear

3 fitting line.
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6 Figure S16. Cycling stability characteristics (after initializing cycles) of BBL-
7 vOECTs with ly; of 5, 40, and 100 pm.
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Figure S17. Transfer characteristics in log (a,d,g) and linear scale (b,e,h) and
transconductance plot (c,f,i) of BBL-vOECTs with ly; = 5 um (a-c), 40 um (d-f) and

100 um (g-1), respectively, during the cycling stability characteristics.
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Figure S18. Decay trends of (a) Ion, (b) 8m peak and (¢) Lo during cycling

characterizations.
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1 Supplementary Tables

2 Table S1. The thickness of BBL and gDPP-g2T thin films

Im (pm)
2 5 10 20 40 60 80 100
Thi gDP / 124.41 125.73 12442 123.21 12398 124.53 125.24
ck- glz):r +2.63 £1.06 +2.02 +2.20 +2.68 +£3.25 +1.56
ness BBL 107. 106.80 106.79 106.68 107.32 107.63 107.58 107.26
(nm 1742 +0.52 +£0.50 #1.10 +£1.89 £1.28 4232 +£1.92
) .20
3
4 Table S2. Parameters for simulations
Parameters Values Reference
Configuratio Electrode
30 um -
n Overlap
Permittivity 8.3 3
Band gap 1.8 eV 6
Work function 43¢V 6
BBL Electron
. 2.2x1072cm?/V 6
mobility
Bandgap
None -
narrowing
Temperature 300 K -
Environment
Ambient Air -

5 The distribution of the fringe electric field was obtained by using Lumerical Charge

6 simulations. Table S1 shows the device configuration, environment, and BBL

7 material parameters, along with relevant references.
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