1		SUPPLEMENTARY INFORMATION					
2							
3	Ef	fect of channel patterning precision on the performances of vertical OECTs					
4	Ru	hua Wu ^a , Chufeng Wu ^a , Jinhao Zhou ^a , Liang-Wen Feng ^b , Jianhua Chen ^c , Dan					
5	Zh	Zhao *a, and Wei Huang *a					
6							
7	a.	School of Automation Engineering, University of Electronic Science and					
8		Technology of China (UESTC), 611731, Chengdu, China.					
9	b.	Key Laboratory of Green Chemistry & Technology, Ministry of Education,					
10		College of Chemistry, Sichuan University, Chengdu, 610065, China.					
11	c.	Department of Chemical Science and Technology, Yunnan University, Kunming,					
12		China.					
13							

1 Supplementary Figures:

3 Figure S1. Chemical structures of BBL (a) and gDPP-g2T (b).4

5

2

6 Figure S2. Plot of thickness of BBL and gDPP-g2T thin films with different
7 patterning precisions (Error bars represent the standard deviation of 3 data points).

8 The BBL and gDPP-g2T films hold average thicknesses of approximately 107 nm and 9 124 nm, respectively, under various $l_{\rm M}$. Therefore, patterning precision would not 10 affect the thickness of the OMIECs, and it also indicates that the device performance 11 variation is due to different $l_{\rm M}$.

 J_M=2 μm
 5 μm
 10 μm

 20 μm
 40 μm
 60 μm

 80 μm
 100 μm

12

13 Figure S3. Microscopic images of the BBL thin films with different patterning

14 precisions. (scale bar = $50 \mu m$)

Figure S4. Transfer characteristics in log-scale (a) and linear scale (b) of BBL-based
vOECTs, where the block and dash curves represent the drain terminal set at the top
and bottom electrode, respectively.

6

1

7 Figure S5. Schematics of comparing ion injection of precise pattern (a) and large
8 pattern (b) of a p-type accumulation-mode vOECT.

9 Taking a p-type accumulation-mode vOECT as an example, when the negative gate 10 bias gradually increases, the stronger accumulation of ions at the semiconductor-11 electrolyte interface of precisely patterned vOECT may result in stronger Coulombic 12 repulsion, affecting ion doping efficiency. Moreover, larger OMIEC introduces a 13 larger contact area between the electrodes and channel, leading to smaller inject 14 resistance, which could also facilitate the injection of ions and negatively shifted V_{th} 15 for n-type transistors or positively shifted V_{th} for p-type transistors.

7 Figure S7. Simulation curves of the fringe electric field as a function of OMIEC 8 thickness d (a), source-drain voltage V_D (b), and the fitting curve with $E_{fr} \propto x^{-2}$.

10

11 Figure S8. Circuit diagram describing the current discrete model of OECT.

12 It shows a circuit diagram of the discrete model with the gate current branches I_S , I_D , 13 and I_{CH}^1 . Based on this model, a dynamic model describing the source/drain current is 14 proposed.

15
$$i_D(t) = i_{CH}(t) - fi_G(t)$$
 (1)

16
$$i_S(t) = -i_{CH}(t) - (1-f)i_G(t)$$
 (2)

1 f is a weighting factor, supposed to be related to the bias at drain/gate terminals and 2 device symmetry^{2, 3}. At the off-state of vOECTs, pristine BBL exhibits the property of 3 an intrinsic semiconductor with a conductivity under 10^{-12} S cm^{-1.4} In this case, I_{CH} 4 contributes little to I_D but dominated by I_G. It suggests that the drain current at off-5 state (I_{off}) exhibits a similar trend to I_G as I_M increases regarding increasing parasitic 6 impedance.

7

8

9

10 Figure S9. Microscopic images of the BBL-based vOECTs with 100 µm wide top

11 electrodes (scale bar = $100 \mu m$).

12

14 **Figure S10.** Transfer characteristics ($V_D = 0.1 V$) in log-scale (a) and linear scale (b), 15 and plots of g_m (c) of BBL-based vOECTs with top electrode width of 100 µm. I_{on} (d),

1 g_m (e), and I_{off} (f) of the BBL-based vOECTs.

BBL-based vOECTs with wider top electrodes ($W_T = 100 \ \mu m$) are prepared (Figure 2 S9). Transfer characteristics are performed along with the extraction of several key 3 4 parameters, as shown in Figure S10. Compared to the vOECT with a top electrode 5 width of approximately 30 µm, the vOECT with a top electrode width of 100 µm exhibits about a threefold increase in I_{on} and $g_m.$ As l_M increases from 5 μm to 100 $\mu m,$ 6 I_{on} and g_{m} of the vOECT increase from 1.14 mA and 4.27 mS to 2.01 mA and 7.21 7 mS, respectively. The parameters gradually reach a plateau as l_{M} increases to 60 $\mu\text{m},$ 8 exhibiting a similar trend to the devices with the narrower top electrode. However, 9 10 due to the larger area of top electrodes, the electrolyte-gold electrode contact area is significantly large. Ioff is adversely affected due to additional parasitic impedance, 11 resulting in high $I_{\rm off}$ at 10⁻⁸-10⁻⁷ A, which is an order of magnitude larger than the 12 narrower top OECTs. 13

14

16 Figure S11. Microscopic images of the gDPP-g2T-based vOECTs with different

- 17 patterning precisions (scale bar = $100 \mu m$).
- 18
- 19
- 20

Figure S12. Microscopic images of the gDPP-g2T thin films with different patterning 2

- 3 precisions. (scale bar = $50 \mu m$)
- 4

5

Figure S13. Ionic equivalent circuit of an ideal OECT (i) and an OECT with 7

 $V_{G} \qquad V_{G} \\ \downarrow R_{S} \qquad \downarrow R_{S} \\ \downarrow C_{CH} \qquad \downarrow C_{CH}$

i

R_s'

ii

considering its parasitic impedance (ii). 8

9

10 Figure S14. EIS curves of the n-type vOECTs with different l_{M} (See Experimental for

11 detailed measurement setup).

2 Figure S15. Plot of $R'_{S}(C_{CH} + C_{Pr})$ as a function of l_{M} and the corresponding linear 3 fitting line.

6 Figure S16. Cycling stability characteristics (after initializing cycles) of BBL-7 vOECTs with l_M of 5, 40, and 100 μ m.

2 Figure S17. Transfer characteristics in log (a,d,g) and linear scale (b,e,h) and 3 transconductance plot (c,f,i) of BBL-vOECTs with $l_M = 5 \mu m$ (a-c), 40 μm (d-f) and 4 100 μm (g-i), respectively, during the cycling stability characteristics.

2 Figure S18. Decay trends of (a) I_{on} , (b) g_{m_peak} and (c) I_{off} during cycling 3 characterizations.

1 Supplementary Tables

		$l_{\rm M}$ (µm)							
		2	5	10	20	40	60	80	100
Thi	gDP	/	124.41	125.73	124.42	123.21	123.98	124.53	125.24
ck-	P- g2T		±2.63	±1.06	± 2.02	±2.20	±2.68	±3.25	±1.56
ness	BBL	107.	106.80	106.79	106.68	107.32	107.63	107.58	107.26
(nm		17±2	±0.52	± 0.50	± 1.10	±1.89	± 1.28	± 2.32	± 1.92
)		.20							

2 Table S1. The thickness of BBL and gDPP-g2T thin films

3

4 Table S2. Parameters for simulations

	Parameters	Values	Reference	
Configuratio	Electrode	20 um	-	
n	Overlap	50 µm		
	Permittivity	8.3	5	
	Band gap	1.8 eV	6	
	Work function	4.3 eV	6	
BBL	Electron	$22\times 10^{-2} = 2.5$	6	
	mobility	$2.2 \times 10^{-2} \text{ cm}^{-2}/\text{ V}$		
	Bandgap	N		
	narrowing	None	-	
F actoria and	Temperature	300 K	-	
Environment	Ambient	Air	-	

5 The distribution of the fringe electric field was obtained by using Lumerical Charge
6 simulations. Table S1 shows the device configuration, environment, and BBL
7 material parameters, along with relevant references.

1 References

- 2 1. Friedlein, J. T.; Donahue, M. J.; Shaheen, S. E.; Malliaras, G. G.; McLeod, R.
- 3 R., Microsecond Response in Organic Electrochemical Transistors: Exceeding the 4 Ionic Speed Limit. *Advanced Materials* **2016**, *28* (38), 8398-8404.
- 5 2. Faria, G. C.; Duong, D. T.; Salleo, A., On the transient response of organic 6 electrochemical transistors. *Organic Electronics* **2017**, *45*, 215-221.
- 7 3. Friedlein, J. T.; McLeod, R. R.; Rivnay, J., Device physics of organic 8 electrochemical transistors. *Organic Electronics* **2018**, *63*, 398-414.
- 9 4. Fazzi, D.; Negri, F., Addressing the Elusive Polaronic Nature of Multiple Redox
 10 States in a π-Conjugated Ladder-Type Polymer. *Advanced Electronic Materials* 2021,
 11 7 (1), 2000786.
- 12 5. Kraner, S.; Koerner, C.; Leo, K.; Bittrich, E.; Eichhorn, K. J.; Karpov, Y.;
- 13 Kiriy, A.; Stamm, M.; Hinrichs, K.; Al-Hussein, M., Dielectric function of a
- 14 poly(benzimidazobenzophenanthroline) ladder polymer. Physical Review B 2015, 91
- 15 (19), 195202.
- 16 6. Kim, F. S.; Park, C. H.; Na, Y.; Jenekhe, S. A., Effects of ladder structure on the
- 17 electronic properties and field-effect transistor performance of
- 18 Poly(benzobisimidazobenzophenanthroline). Organic Electronics 2019, 69, 301-307.
- 19