
 S

1 

Supporting Information 

Photocatalytic detoxification of a sulfur mustard simulant by donor-enhanced 

porphyrin-based Covalent-Organic Frameworks 

Yana Chena,d, Zewen Shena, Yezi Hua, Haotian Zhanga, Lisha Yinb, Guixia Zhao*a, Guangtong Hai*c 

and Xiubing Huang*d 

a College of Environmental Science and Engineering, North China Electric Power University, Beijing 

102206, P. R. China 

b Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), 

Nanjing Tech University (Nanjing Tech), Nanjing, 211816, P. R. China 

c Institute of Zhejiang University-Quzhou, Zhejiang University, Quzhou 324000, China 

d Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of 

Function Materials for Molecule & Structure Construction, School of Materials Science and 

Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China 

*Corresponding authors  

E-mail address: guixiazhao@ncepu.edu.cn (G. Zhao), haigt@zju.edu.cn (G. Hai), 

xiubinghuang@ustb.edu.cn (X. Huang) 

  

Supplementary Information (SI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2025



 S

2 

1. General information 

All reagents were purchased from commercial suppliers and used without further purification unless 

stated otherwise. 5,10,15,20-tet-rakis-(4-aminophenyl)-porphyrin (TPH, 98%), 2,5-

dihydroxyterephthalaldehyde (DHA, 98%) and 2, 5 -dimethoxyterephthalaldehyde (DMA, 98 %) were 

purchased from Jilin Chinese Academy of Sciences-Yanshen Technology Co., Ltd. Terephthaldehyde 

(DA, 97 %), mesitylene (98 %), 1,4-Dioxane (99.5 %), acetic acid (AcOH, ≥ 99.8 %), ethanol absolute 

(99.5 %, Water ≤ 300 ppm), methanol (99.9%, GC), dimethyl sulfoxide (DMSO, 99.8%), acetonitrile 

(99.9%), isopropanol (99.9%), 2-Chloroethyl ethyl sulfide (≥ 97%), 1-Chloro-2-(ethylsulfinyl) ethane 

(≥ 97%) and Tetrahydrofuran (THF, 99 %, AR) were all provided by Aladdin.  

1.1 Characterizations 

Powder X-ray diffraction (PXRD) analyses were performed using a Rigaku SmartLab SE X-ray 

diffractometer equipped with a Cu Kα source. Small angle X-ray scattering data collected on a Bruker 

D8 Advance diffractometer was used to correct the deviation with a step size of 0.01°. Fourier 

transform infrared spectra (FT-IR) were recorded on a SHIMADZU IRTracer-100. BET surface areas 

were obtained from N2 adsorption/desorption isotherms collected at 77 K using Micromeritics TriStar 

II. Scanning electron microscopy (SEM) images were recorded on a Hitachi SU 8100 Scanning 

Electron Microscope. Solid-state 13C CP/MAS NMR spectra were collected on a BRUKER AVANCE 

NEO 400WB spectrometer. X-ray photoelectron spectroscopy (XPS) analyses were performed using 

a Thermo Scientific ESCALAB 250Xi spectrometer, equipped with a monochromatic Al Kα X-ray 

source (1486.8 eV). Photoelectrochemical experiments measurements were performed on an 

electrochemical workstation (CHI760E, CHI Instruments, Shanghai, China). Electron paramagnetic 

resonance (EPR) spectra were recorded at 293 K with a Bruker EMXnano259 spectrometer, operated 

at 9.62 GHz with 12.59 mW power and modulation at 100 kHz/1 G. By using BaSO4 as a reflectance 

standard, the UV–vis DRS of COFs was estimated from 300 to 800 nm by an UV-3600 UV-vis 

spectrophotometer (Shimadzu, Japan) configured with a diffuse reflectance measurement accessory. 

Thermogravimetric analysis (TGA) spectra were recorded using a TG/DTA 8122 thermogravimeter 

under an N2 atmosphere, with a heating rate of 10 °C min−1 from 30 °C to 800 °C. Photoluminescence 

(PL) spectra were collected on steady-state fluorescence spectrometer (Horiba Fluoromax-4 

spectrophotometer). The conversion, selectivity of CEES was monitored by using a Shimadzu GC–

MS (GCMS-QP2020 NX) instrument equipped with a Dielectric barrier discharge plasma detector and 
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a Zebron ZB-Wax column. 

1.2 Electrochemical measurements  

The Mott-Schottky plots, photocurrent response and electrochemical impedance of the photo-catalysts 

were measured on an electrochemical workstation (CHI760E, CHI Instruments, Shanghai, China). A 

white LED (PLS-LED 100C, PerfectLight) was utilized as the light source and 0.5 M Na2SO4 aqueous 

solution was used as the supporting electrolyte throughout the photocurrent measurements. A platinum 

wire and Ag/AgCl electrode were used as counter electrode and reference electrode, respectively. To 

prepare the working electrode, 50 μL naphthol together with 1 mL ethanol was mixed with 2 mg 

catalyst. 50 μL of the mixture was then dipped into ITO, followed by drying in air. Photocurrent 

measurements were conducted with light on–off cycles and a scan rate of 100 mV s−1. Mott–Schottky 

measurements were performed under dark conditions at frequencies of 500 Hz, 1000Hz and 1500 Hz. 

Furthermore, electrochemical impedance spectroscopy (EIS) was conducted under light irradiation at 

a bias potential of +0.5 V. The potential vs NHE was calculated by using the following Eq:  

ENHE = EAg/AgCl + 0.197  
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Fig. S1. The schematic diagram for synthesis and structures of COF-H, COF-OH and COF-OMe. 

 

 

 

Fig. S2. Fourier transform infrared spectra (FT-IR) of (a) COF-H, (b) COF-OH and (c) COF-OMe. 
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Fig. S3. N 1s XPS spectra of (a) COF-H and (b) COF-OH. 

 

 

Fig. S4. C 1s XPS spectra of (a) COF-H, (b) COF-OH and (c) COF-OMe. 

 

 

Fig. S5. Thermal gravimetric analysis spectrum of COF-H, COF-OH and COF-OMe. 
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Fig. S6. N2 sorption isotherms of COF-H, COF-OH and COF-OMe. 

 

 

Fig. S7. Pore size distribution of (a) COF-H, (b) COF-OH and (c) COF-OMe. 

 

 

Fig. S8. Mott–Schottky plots of (a) COF-H, (b) COF-OH and (c) COF-OMe at 500 Hz, 1000 Hz and 

1500 Hz. 



 S

7 

 

Fig. S9. COF-OMe photocatalyst for selective photocatalytic detoxification of CEES in different 

solvents. Standard conditions: COFs (5 mg), solvents (5 mL), CEES (0.2 mmol), air, white LED. 

Reaction time: 3h. 

 

 

Fig. S10. COF-OMe photocatalyst for selective photocatalytic detoxification of CEES in air and 

oxygen environments. Standard conditions: COFs (5 mg), CH3OH (5 mL), CEES (0.2 mmol), white 

LED. Reaction time: 3h. 
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Fig. S11. EPR spectra obtained over COF-OMe under white LEDs irradiation and dark condition. 

 

 

Fig. S12. SEM spectra of COF-OMe before and after reaction.  

 

 

 

Fig. S13. PXRD characterization of COF-OMe before and after reaction. 
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Fig. S14. FT-IR spectra of COF-OMe before and after reaction. 

 

Fig. S15. PXRD characterization COF-H (a) and COF-OH (b); FT-IR spectra of COF-H (c) and COF-

OH (d) before and after reaction. 
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Table S1. The BET surface areas and pore size of COF-H, COF-OH and COF-OMe. 

COFs materials The BET surface areas (m2/g) Pore size (nm) 

COF-H 211.4 1.91 

COF-OH 515.8 1.96 

COF-OMe 592.3 1.87 

 

Table S2. Performance of CEES photocatalytic oxidation using various porous materials. 

Photocatalysts Solvent Atmosphere light 
Conversi

on 
Ref. 

NU-400 methanol O2 Ultraviolet light 
t1/2=10.2 

min 
1 

NU-1000 methanol O2 Ultraviolet light 
t1/2=6.2 

min 
2 

In2S3/NU-1000 methanol O2 Simulated sunlight 3h, 90% 3 

NU-1000-PCBA methanol O2 UV (450nm) 
t1/2 = 3.5 

min 
4 

Br-BDP@NU-1000 methanol O2 
green light 

(325nm) 

t1/2 = 2.5 

min 
5 

Ag12TpyP Ethanol O2 White light (80nm) 
t1/2 = 1.5 

min 
6 

PCN-222 Methanol O2 Blue light 
t1/2=13mi

n 
7 

TBP⊂ExBox•PSS methanol O2 UV (500nm) 
t1/2 

=5min 
8 

I-BDP-POP MeOH O2 
green LED 

(450nm) 

t1/2 

=3min 
9 

Fe-TCPP-La Methanol O2 blue LED 
t1/2 

=2.5min 
10 

CzBSe-CMP methanol O2 
Blue LED lamp (30 

W, 460 nm) 
1h, 99% 11 

MOF/BA/textile No solvent Air Simulated sunlight 
t1/2=17.6 

min 
12 

Ag@TAPP-TFPT Methanol O2 Xe light 
t1/2 =6.5 

min 
13 

TiO2/PMA SNBs methanol Air xenon lamp 
20min, 

98.29% 
14 

PCN-224@TiO2 DMF Air Simulated sunlight 
t1/2=330

min 
15 

COF-OMe Methanol Air white LED 2h,99% 
this 

work 
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Table S3. The material cost and operation cost of different COFs for CEES photocatalytic oxidation. 

Materials Material Cost (＄/g) Operation Cost (＄/g) Ref 

BTT-TPh-O-COF 228.2 CD3OD (5g/64.4), O2(1atm/0.424) 16 

Por-Aminal-COF 698.8 CD3OD (5g/64.4), O2(1atm/0.424) 17 

PW12-Ag@COF 97.9 CD3OD (5g/64.4), O2(1atm/0.424) 18 

Ag@TAPP−TFPT 127.2 CD3OD (5g/64.4), O2(1atm/0.424) 13 

COF-H 39.1 Methanol (5g/0.07) Air (0) this work 

COF-OH 58.2 Methanol (5g/0.07) Air (0) this work 

COF-OMe 53.8 Methanol (5g/0.07) Air (0) this work 
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