Supporting Information

Non-Invasive and Rapid Diagnosis of Low-Grade Bladder Cancer via SERSomes of Urine

Yao Lu, ^{1,Δ} Jiayi Wang, ^{2,Δ} Xinyuan Bi, ¹ Hongyang Qian, ² Jiahua Pan, ^{2,*} Jian Ye^{1,3,4,5*}

¹State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China

²Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong

University, Shanghai, P.R. China

³Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, P. R.

China

⁴Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China

*To whom correspondence should be addressed. <u>yejian78@sjtu.edu.cn</u> (J.Y.), panjiahua@renji.com (J.P.)

^ΔThese authors contributed equally.

Figure S1. SERS average spectra for 2 different patients using the original Ag NPs as substrates.

Figure S2. SERS average spectra for 5 different patients using original, 5X, 10X and 20X concentrated Ag NPs as substrates.

Figure S3. SERS spectra heatmaps of 4 different patients' urine samples with concentrated Ag NPs ($\sim 0.076 \text{ mg/mL}$).

Table S1. The possible corresponding relationships between the important differential bands and biological substances in urine sample. (For the substances without references marked, they can be referred to the database shown in Figure 4B&C.)

Peak (cm ⁻¹)	Substance
LGBC diagnosis	
749-767	Tryptophan ¹ /ethanolamine ¹
1389-1405	NH in-plane deformation ²
593-608	Phosphate ³ /cholesterol ⁴
662-682	Ring breathing modes in the DNA bases ⁵
1311-1361	Ring breathing modes in the DNA/RNA bases ⁵
1706-1726	Xanthine/urea
707-727	DNA ⁶
1147-1187	Palmitic acid ⁴
1425-1465	Saturated fatty acid chains ⁴
1273-1309	Palmitic acid ⁴
LGBC stratification	
1440-1461	Hypoxanthine
1387-1411	NH in-plane deformation ²
736-760	Hypoxanthine/riboflavin
702-723	Cholesterol ⁴
1701-1724	Xanthine/urea
1482-1520	Hypoxanthine/riboflavin
1140-1147	Phenylalanine
1319-1355	Guanine ⁷ /tryptophan ³
1541-1567	Porphyrin ⁸ /NADH ⁹
1609-1627	Phenylalanine ¹⁰ /NADH ⁹ /tryptophan ³

References

- 1. V. Zivanovic, A. Milewska, K. Leosson and J. Kneipp, *Anal Chem*, 2021, **93**, 10106-10113.
- S. Farquharson, C. Shende, F. E. Inscore, P. Maksymiuk and A. Gift, *J Raman Spectrosc*, 2005, 36, 208-212.
- 3. W. T. Cheng, M. T. Liu, H. N. Liu and S. Y. Lin, *Microsc Res Techniq*, 2005, 68, 75-79.
- 4. C. Krafft, L. Neudert, T. Simat and R. Salzer, *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 2005, **61**, 1529-1535.
- 5. J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara and T. Huser, *Biophys J*, 2006, **90**, 648-656.
- 6. G. Shetty, C. Kendall, N. Shepherd, N. Stone and H. Barr, *Brit J Cancer*, 2006, 94, 1460-1464.
- 7. A. J. Ruiz-Chica, M. A. Medina, F. Sánchez-Jiménez and F. J. Ramírez, J Raman Spectrosc,

2004, **35**, 93-100.

- Z. W. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam and H. S. Zeng, *Int J Cancer*, 2003, 107, 1047-1052.
- 9. R. Malini, K. Venkatakrishna, J. Kurien, K. M. Pai, L. Rao, V. B. Kartha and C. M. Krishna, *Biopolymers*, 2006, **81**, 179-193.
- 10. I. Notingher, C. Green, C. Dyer, E. Perkins, N. Hopkins, C. Lindsay and L. L. Hench, *J R Soc Interface*, 2004, **1**, 79-90.