Supporting Information

Bulk photovoltaic effect in two-dimensional ferroelectric

semiconductor a-In₂Se₃

Xiaojuan Chen1#,*, Kang Xu2#, Tingxiao Qin1, Yubin Wang2, Qihua Xiong1,2,3,4, and Haiyun Liu1*

1 Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China;

2 State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China;

3 Frontier Science Center for Quantum Information, Beijing 100084, P. R. China;

4 Collaborative Innovation Center of Quantum Matter, Beijing 100084, P.R. China.

#These authors contributed equally to this work.

*To whom correspondence should be addressed.

Emails: X. J.: xjchen@baqis.ac.cn and H.Y.: liuhy@baqis.ac.cn

Section 1: Ferroelectricity of 3R a-In2Se₃ flakes

Section 2: Characterization of thin graphite/a-In₂Se₃/thin graphite device

Section 3: Electrical transport research of thin graphite/α-In₂Se₃/thin graphite device

Section 4: Optical characterization of α-In₂Se₃ flake

Section 5: Temperature dependence of I_{sc} and V_{oc} for 2D α -In₂Se₃ BPV device and its circuit Model

Section 6: 2D α-In₂Se₃ BPV device under different light excitations

Section 1: Ferroelectricity of the 3R α-In₂Se₃ flake

Figure S1 |Side view of a triple-layer rhombohedral (3R) α -In₂Se₃. The blue and orange balls represent In and Se atoms, respectively. The black arrows represent possible spontaneous polarizations.

Section 2: Characterization of thin graphite/α-In₂Se₃/thin graphite device

Figure S2 | XRD pattern of a α -In₂Se₃ flake (a) and thin graphite (b) from a thin graphite/ α -In₂Se₃/thin graphite device.

Section 3: Electrical transport of thin graphite/α-In₂Se₃/thin graphite device

The |I|-V curve shows a counter-clockwise loop at room temperature.

Figure S3 | Current-voltage |I|-V of a thin graphite/ α -In₂Se₃/thin graphite under current sweeping at a rate of 0.1 V/s between -3 and 3 V.

Section 4: Optical characterization of a α -In₂Se₃ flake

Figure S4 |Differential reflectance of a α -In₂Se₃ flake.

Section 5: Temperature dependence of I_{sc} and V_{oc} for 2D α -In₂Se₃ BPV device and its circuit Model

In order to discuss the possible mechanism underlying the temperature dependence of I_{sc} and V_{oc} under light illumination, we investigate the temperature dependence of I-V curves under dark and light conditions (illustrated in Figure S5). As the device was cooled, the total resistance containing bulk materials resistance (R_{bulk}) and contact resistance ($R_{contact}$) increased. As expected, carrier concentration in bulk semiconductors decreases at low temperatures, leading to the increase of R_{bulk} . The increase of $R_{contact}$ also occurs with decreasing temperature for the Schottky barrier.

Figure S6 displays the equivalent circuit model that may represent the device conditions during measurements of photovoltaic effect. I_{pv} is the BPV photocurrent which works as a current source. I_p and V_p are the output current and voltage of BPV device, respectively. I_b is the current within the bulk materials. The relationship of these parameters can be described by the following equation.

$$I_{pv} = I_{b} + I_{p}$$
(1)
$$I_{b}R_{bulk} = I_{p}R_{contact} + V_{p}$$
(2)

The open-circuit photovoltage (short-circuit photocurrent) is output voltage (current) when $I_p = 0$ ($V_p = 0$). Then, V_{oc} and I_{sc} are given by

$$V_{\rm oc} = R_{\rm bulk} I_{\rm pv}$$
(3)
$$I_{\rm sc} = \frac{R_{\rm bulk}}{R_{\rm bulk} + R_{\rm contact}} I_{pv}$$
(4)

Eq. 3 indicates that V_{oc} is proportional to R_{bulk} . Suppose I_{pv} is temperature independent, V_{oc} of the device will increase with decreasing temperature. Suppose $\frac{R_{contact}}{R_{bulk}} = 1$, the I_{sc} is temperature-independent from Eq.4, which aligns well with the experimental

results.

Figure S5 | Current-voltage *I-V* curves from a thin graphite/ α -In₂Se₃/thin graphite device under dark (a) and light illumination (b) conditions at different temperatures.

Figure S6 |An equivalent circuit mode for BPV.

Section 6: 2D In₂Se₃ BPV device under three different light excitations

Figure S7 |Current-voltage I-V curves for thin graphite/In₂Se₃/thin graphite device under three light wavelengths and their corresponding zoom-in images.