Supplementary Tables

In vivo vectorization and delivery systems for gene therapies and RNA-based therapeutics in oncology

Julie Schock Vaiani^a, Mans Broekgaarden^a, Jean-Luc Coll^a, Lucie Sancey^a, Benoit Busser^{*a,b,c}

^{a.} Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France. E-mail: bbusser@chu-grenoble.fr

^{b.} Grenoble Alpes Univ. Hospital (CHUGA), 38043 Grenoble, France.

^c Institut Universitaire de France (IUF), 75005 Paris, France.

Table S1: Selection of recent gene therapies using Adenoviral vectors

Serotype /	Transgene	Administration	Cancer	Phase	Sponsor / Investigator	NCT + ASCO
Modification NA	HSV-tk	NA	GBM	1/11	David S Baskin, Houston Methodist Neurological Institute	NCT03596086: Gene Therapy for High Grade Glioma: The Clinical Experience Varela et Al. ¹
24-base pair deletion in the E1A gene (replication deficient)	OX40L	Intra-tumoral	Resectable Colorectal Liver Metastasis	1	DNAtrix, Inc.	NCT04714983: DNX-2440 for Resectable Colorectal Liver Metastasis Jiang et Al. ²
		stereotactic injection	GBM	1	DNAtrix, Inc	NCT03714334: DNX-2440 Oncolytic Adenovirus for Recurrent Glioblastoma Jiang et Al. ²
NA	p53	intra-tumoral	Solid Tumours		MultiVir, Inc.	NCT03544723: Analysis of Adenoviral p53 Gene Therapy Clinical Trials in Recurrent Head and Neck Squamous Cell Carcinoma Sobol et Al. ³
Replication deficient	Interferon Alpha-2b	Intrapleural	Malignant Pleural Mesothelioma (INFINITE)		Trizell Ltd	NCT03710876: Nadofaragene Firadenovec: First Approval Lee et al. ⁴
NA	TMZ-CD40L and 4- 1BBL	Intra-tumoral	advanced pancreatic cancer	111	Trizell Ltd	NCT02705196: LOAd703 Oncolytic Virus Therapy for Pancreatic Cancer A phase I/II study of LOAd703, a TMZ-CD40L/4-1BBL-armed oncolytic adenovirus, combined with nab-paclitaxel and gemcitabine in advanced pancreatic cancer Musher et Al. ⁵ LOAd703, an oncolytic virus-based immunost Musher et Al. ⁶

Ad5	yCD/mutTKSR39 (yeast cytidine deaminase/mutant S39R HSV-1 thymidine kinase) and human IL-12 (IL12)	Intra-tumoral	metastatic pancreatic cancer	1	Henry Ford Health System	NCT03281382: Phase 1 Trial of Interleukin 12 Gene Therapy for Metastatic Pancreatic Cancer Phase I trial of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy for the treatment of metastatic pancreatic cancer Barton & Al. ⁷
Ad-5, El-deleted Ofranergene obadenovec	Fas-chimera (Fas-c) transgene	IV	recurrent platinum resistant ovarian cancer	111	Vascular Biogenics Ltd. operating as VBL Therapeutics	NCT03398655: Randomized controlled phase III trial of weekly paclitaxel ± ofranergene obadenovec (VB-111) for platinum-resistant ovarian cancer (OVAL Study/GOG 3018). =>no improvement of OS or PFS Arend et Al. ⁸
HER 2 CAR-T + AdV	Dual expression of IL- 12 and PD-L1 blocker	Tumour site	Advanced HER2 Positive Solid Tumours (VISTA)	1	Shalini Makawita, Baylor College of Medicine	NCT03740256: Binary oncolytic adenovirus in combination with HER2-specific autologous CAR VST for treatment of advanced HER2-positive solid tumors (VISTA). Makawita et Al. ⁹
NA	Ad-RTS-hIL-12 (RheoSwitch Therapeutic System = TF) & interleukin-12	stereotactic	Glioblastoma or Malignant Glioma	1	Alaunos Therapeutics	NCT02026271: A Study of Ad-RTS-hIL-12 With Veledimex in Subjects With Glioblastoma or Malignant Glioma Final results of controlled IL-12 monotherapy in adults with grade III or IV gliomas. Chiocca et al. ¹⁰

Table S2: Clinical developments of aglatimagene besadenovec (AglaVec) (CAN-2409): Summary of clinical trials, therapeutic indications, and outcomes using vector particles (VP).

Cancer	Clinical Development	Dose and treatment protocol	Results	References
High grade glioma/ Glioblastoma	Phase I/II (NCT00870181)	Intra-arterial cerebral infusion (1 × 10 ¹² viral particles of AglaVec)	 Progression-Free Survival (PFS): ADV-TK treatment significantly improved PFS compared to control, with a median survival of 29.6 weeks versus 7.9 weeks (HR: 0.315, p < 0.001). The benefit was more pronounced in the GBM subgroup, achieving a PFS of 34.9 weeks compared to 9.0 weeks (HR: 0.157, p < 0.001). Overall Survival (OS): DV-TK markedly extended OS, with a median survival of 45.6 weeks versus 7.9 weeks (HR: 0.207, p < 0.001). The GBM subgroup showed the most significant gain, with an OS of 45.4 weeks compared to 9.6 weeks (HR: 0.125, p < 0.001). Hazard Ratio (HR): the lower HR values for both PFS and OS demonstrates a substantial survival advantage for ADV-TK, particularly in the GBM subgroup. 	Adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of recurrent high-grade glioma Ji et al. ¹¹
Malignant pleural effusion (Lung cancer, Mesothelioma Breast Cancer Ovarian Cancer	Phase I/II (NCT01997190)	- <u>Cohort 1</u> : 3 patients received 1×10^{12} vp. - <u>Cohort 2</u> : 3 patients received 1×10^{13} vp. - <u>Cohort 3</u> : 14 patients enrolled (13 treated) received 1×10^{13} vp combined with celecoxib	 Response Evaluation (RECIST): 17 patients were evaluable Best response: Partial Response (PR) observed in 4 patients, including 3 with MM and 1 with NSCLC. 	Phase I study of gene mediated cytotoxic immunotherapy (GMCI) for patients with malignant pleural effusion (MPE) Aggarwal et al. ¹²
Malignant Glioma (Anaplastic Astrocytoma Glioblastoma Multiforme High Grade Glioma Malignant Glioma	Phase IIa (NCT00589875)	Single dose of 3 × 10 ¹¹ vp administered directly to the tumour bed post-resection on day 0	PFS and OS showed moderate improvement	Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma Wheeler et Al. ¹³
Paediatric Brain Tumours (Malignant Glioma Recurrent Ependymoma	Phase I (NCT00634231)	AdV-tk at doses of 1×10^{11} and 3×10^{11} vp was administered into the tumour bed during surgery, followed by a 14-day course of valacyclovir	 <u>Patient Enrolment:</u> Eight patients were enrolled and completed therapy (6 glioblastoma, 1 anaplastic astrocytoma, 1 recurrent ependymoma). <u>Surgical Outcome</u>: Five patients presented with multifocal or extensive tumours that were not fully resectable; three patients underwent gross total resection. <u>Toxicity</u>: No dose-limiting toxicities were identified. <u>Adverse Events</u>: The most common GMCI-related adverse events 	Phase I study of gene-mediated cytotoxic immunotherapy with AdV-tk as adjuvant to surgery and radiation for pediatric malignant glioma and recurrent ependymoma Kieran et al. ¹⁴

Pancreatic cancer	Phase II (NCT02446093) + FAST TRACK	NA	 were grade 1–2 fever, fatigue, and nausea/vomiting. Long-Term Survival: Three patients on dose level 2 achieved survival beyond 24 months, with two remaining progression-free at 37.3 and 47.7 months post-AdV-tk injection. OS Patients treated with CAN-2409 achieved a median OS of 28.8 months compared to 12.5 months in the control group. 24-Month OS Rate: 71.4% for CAN-2409 vs 16.7% for the standard-of-care (SOC) group 36-Month OS Rate: Estimated at 47.6% for CAN-2409 vs 16.7% for the control group 	Candel Therapeutics receives FDA fast track designation for CAN-2409 in pancreatic cancer Ref ¹⁵
Prostate cancer	Phase II (ULYSSES) (NCT02768363)	NA	NA	Immunotherapy in prostate cancer: new horizon of hurdles and hopes Tsaur et al. ¹⁶
Stage III/IV NSCLC	Phase II (NCT04495153)	Two doses of CAN-2409 (5 × 10 ¹¹ vp) were administered 5–7 weeks apart via bronchoscopic or percutaneous injection into the lung tumour, disease- positive lymph node, or peripheral metastasis. <u>Adjuvant Therapy:</u> Each dose was followed by oral prodrug administration.	 mOS: 20.6 months, exceeding standard chemotherapy outcomes. 90% of patients: Stage IV disease. Abscopal effect: >70% with at least one uninjected lesion. 1–2 tumour injections sufficient to train immune cells. Systemic and durable antitumor activity observed. 	Overall survival after treatment with CAN-2409 plus valacyclovir in combination with continued ICI in patients with stage III/IV NSCLC with an inadequate response to ICI. Aggarwal et al. ¹⁷

Table S3: CF33 clinical developments

Cancer	Clinical Development	Status	Dose	Results	References
Metastatic or Advanced Solid Tumours (MAST)	Phase 1 (NCT05346484)	Recruiting	CF33-hNIS administered IT or IV, alone or in combination with pembrolizumab in patients with advanced or metastatic solid tumours with ≥ 2 prior lines of therapy	NA	Oncolytic virus CF33-hNIS monotherapy for the treatment of gastrointestinal (GI) malignancies.
Anatomic Stage IV Breast Cancer AJCC Metastatic Triple- Negative Breast Carcinoma Prognostic Stage IV Breast Cancer AJCC	Phase I (NCT05081492)	Active not recruiting	intratumorally at one of 8 assigned dose levels $(1 \times 10^5$ PFU, 3×105 PFU, 1×10^6 PFU, 3×106 PFU, 1×10^7 PFU, 3×107 PFU, 1×10^8 PFU, 3×108 PFU) on Days 1 and 15 of each 28-day cycle for a total of 3 cycles of treatment.	Ongoing Trial: No results posted: but CASE REPORT with positive results	CF33-hNIS-anti-PD-L1 oncolytic virus followed by trastuzumab- deruxtecan in a patient with metastatic triple negative breast cancer: a case study Yuan et al. ¹⁹
Advanced or Metastatic Solid Tumours	Phase 1 (NCT06063317)	Recruiting	3+3 dose escalation scheme independently of each route of CF33-CD19 administration (IT and IV) with dose levels of CF33-CD19 ranging from 1.0x10 ⁷ to 3.0x10 ⁹ PFU	NA	Combination therapy with the oncolytic virus CF33-CD19 and blinatumomab for the treatment of advanced solid tumors. Li & al. ²⁰

Table S4: Important parameters for nanoparticles formulation and characterization

Character	Parameters	Definition	References
Morphology	Size	The physical dimensions of nanoparticles, typically measured in nanometres (nm), significantly influence their	Nanodelivery of nucleic acids
		biological fate, including cellular uptake, biodistribution, and tissue penetration.	
	Polydispersity	The variation in nanoparticle size within a formulation is quantified using the polydispersity index (PDI). A low PDI	Mendes et Al. ²¹
		indicates uniformity, enhancing reproducibility, stability, and controlled drug release.	
	Shape	The geometric form of nanoparticles-spherical, rod-like, or irregular-impacts their biodistribution, cellular	
		interactions, and clearance rates, influencing therapeutic efficiency and biological functionality.	
Surface charge	Zeta potential	The surface charge of nanoparticles, measured at the slipping plane in a colloidal system, determines their	
		stability, aggregation behaviour, and interaction with biological membranes, affecting circulation and cellular	
		uptake.	
	Hydrophobicity	The degree to which nanoparticle surfaces repel water influences their dispersibility, stability, and interaction	
		with biological systems, playing a critical role in cellular uptake and protein corona formation.	
	Stability	The ability of nanoparticles to resist aggregation or degradation over time ensures consistent size distribution,	
		biological activity, and therapeutic performance.	
Composition	Encapsulation	The proportion of the therapeutic agent successfully loaded into nanoparticles relative to the total input, which	
	efficiency	directly impacts drug dosage, bioavailability, and therapeutic efficacy.	
	Molecular Ratio	The ratio of nanoparticle components (e.g., drug-to-carrier or lipid-to-polymer) is critical for optimizing	
		formulation stability, release profiles, and overall performance.	
Surface coating	Targeting	Ligands, antibodies, or peptides conjugated to the nanoparticle surface enable selective binding to target cells or	
	molecules	tissues, enhancing precision and minimizing off-target effects in drug delivery.	
	Stealth	Surface modifications, such as PEGylation, reduce nanoparticle recognition by the immune system, thereby	
		extending circulation time, improving systemic stability, and enhancing therapeutic delivery to target sites.	

Table S5: Targeting molecules and cancer targets in NP-based drug and gene delivery systems

Ligand for functionalizing NPs	Target (Cancer cell surface or intracellular binding site)	References
Folate (small molecule)	Folate Receptor	Promising Nanocarriers for PEDF Gene Targeting Delivery to Cervical Cancer Cells Mediated by the Over- expressing FRα
		Gladkikh et al. ²²
Transferrin Receptor (scFv = single chain fragment)	Transferrin	Brain tumor-targeted therapy by systemic delivery of siRNA with Transferrin receptor-mediated core-shell nanoparticles
		Wei et al. ²³
Hyaluronic Acid (Polysaccharide)	CD44	Recent advances in liposome-based targeted cancer therapy
		Fidan et al. ²⁴
Trastuzumab (Anti-HER2 antibody)	HER-2 (ErbB2)	Tumor-Directed Targeting of Liposomes
		Park ²⁵
Fab' fragments of cetuximab (Anti- EGFR antibody)	EGFR (ErbB1)	Epidermal Growth Factor Receptor–Targeted Immunoliposomes Significantly Enhance the Efficacy of Multiple Anticancer Drugs In vivo
		Mamot et al. ²⁶
Anti-mesothelin antibody	Mesothelin	Mesothelin-mediated targeting of adenoviral vectors for ovarian cancer gene therapy
		Breidenbach et al. ²⁷
TAT (cell penetrating peptide) + MMP2 peptide sequence	MMP2 (enzyme)	Intelligent TAT-coupled anti-HER2 immunoliposomes knock downed MDR1 to produce chemosensitize phenotype of multidrug resistant carcinoma
+ Anti-HER2 antibody	HER 2 (ErbB2)	Gholamian Dehkordi et al. ²⁸
Dexamethasone	Glucocorticoid receptor	Functionalized PDA/DEX-PEI@HA nanoparticles combined with sleeping-beauty transposons for multistage targeted delivery of CRISPR/ Cas9 gene
		Ma et al. ²⁹
Aptamer (G-rich DNA oligonucleotide of 5-10nm)	Nucleolin	Co-Delivery of Paclitaxel and PLK1-Targeted siRNA Using Aptamer-Functionalized Cationic Liposome for Synergistic Anti-Breast Cancer Effects <i>In Vivo</i>
		Yu, et al. ³⁰

Table S6: Overview of key lipid components in lipid nanoparticles (LNPs) and liposomal formulations.

Type of lipid	Role	Name	Characteristics
Ionizable /	- Provide a positive charge to	DOTMA	Monovalent cationic
Cationic Lipid	LNPs/liposomes, enabling		Quaternary ammonium head with ether bonds
(major	interaction with negatively		Commonly used in lipoplexes (e.g., BioNTech formulations)
component of	charged nucleic acids		Lipofectamine = DOTMA + DOPE, however, ether bonds contribute to cytotoxicity
LNP ~50%)		DOTAP	Monovalent cationic
	- Contribute to nanoparticle		Monovalent cationic lipid with a quaternary amine and ester bonds
	biodegradability		More biodegradable than DOTMA due to its hydrolysable ester linkage
		DDAB	Monocationic
	- Ionizable lipids are critical for		Monocationic lipid with a quaternary ammonium head and alkyl (C–N) bonds
	forming destabilizing non-	DODMA	Ionizable monovalent cationic lipidic
	bilayer structures at acidic pH,		Tertiary amine with ester bonds
	facilitating endosomal escape		Protonated at physiological pH (pKa = 6.59), offering improved biodegradability over quaternary amines
	and efficient RNA delivery into	DODAP	Ionizable lipid
	the cytosol		Tertiary amine with ester bond
			Effective for endosomal escape at acidic pH (pKa = 5,59)
		DOSPA	Polycationic lipid
			Polycationic spermine-based lipid with ether and carboxamide bonds
			Forms strong electrostatic interactions with nucleic acids, increasing positive charge density
		GL-67	Polycationic lipid
			Polycationic spermine-based lipid with ether bonds
			Simplified structure compared to DOSPA, improving ease of synthesis
		DOGS	Polycationic lipid
			Polycationic spermine-based lipid with amide bonds
			Amide bonds enhance stability but reduce biodegradability, leading to slower breakdown in vivo.
		Dlin-DMA	Ionizable lipid
			Tertiary amine with ester linker (pKa = 6.0)
			A linolyl analogue of DODMA, enhancing structural versatility
			Dlin-MC3-DMA is used for the approved Onpattro
		SM-102	Ionizable lipid
			Ionizable lipid (pKa = 6.68) with a tertiary amine, hydroxyalkyl group and branched 3-tail structure with ester bond
			Used in Moderna's mRNA-1273 vaccine
		ALC-0315	Synthetic ionizable lipid
			Ionizable lipid (pKa = 6.09) with a tertiary amine, hydroxyalkyl group, and branched four short tails with ester bonds.
			Used in Pfizer/BioNTech mRNA vaccines
		C14.4	Ionizable monoationic lipid
			Ionizable lipid (pKa = 6.5) with a tertiary amine and ether bonds
Ionizable	- Facilitates stable nanoparticle	DOPA	Ionizable anionic lipid with a phosphatidic acid head group and ester bonds.

anionic Lipid	formation by neutralizing		Negatively charged at physiological pH, contributing to nanoparticle stability and transfection capabilities
	excess positive charge		
	- Enhances membrane fusion		
	and transfection efficiency		
Phospholipid	 Provides structural rigidity 	DSPC	Phosphatidylcholine based lipid
(neutral)	and stability to nanoparticles.	18:1EPC	
		DOPC	
	-Enhances transfection	POPC	
	efficiency	HSPC	
		DSPE	Phosphatidylethanolamine based lipid
	-Prevents nanoparticle	DOPE	
	aggregation, ensuring uniform	DPPE	
	dispersion and performance	POPE	
Cholesterol	 Enhances nanoparticle stability and facilitates 	DC-Cholesterol,	Cholesterol derivative
	membrane fusion		Plant-based cholesterol analogue
	 Provides structural rigidity and integrity to lipid nanoparticles Reduces surface protein 	SM-Chol	Cholesterol derivative with sphingomyeline (major component of cellular membranes). Enhances the structural integrity of lipid-based drug delivery systems, making them more stable, biocompatible, and effective in delivering therapeutic agents over longer periods.
	binding, improving circulation time and reducing immune clearance		
PEGylated- Lipid (stealth lipid)	 Enhances colloidal stability of nanoparticles Provides stealth properties by 	C-DMG- PEG(2000)	PEGylated lipid Used in mRNA COVID-19 vaccine LNP (Moderna)
reducing opsonization, protecting nucleic acids from immune system recognition		ALC-0159	PEGylated lipid Used in mRNA vaccines LNP (BioNTech/Pfizer)
	and degradation - Prolongs circulation time in the bloodstream and delays uptake by the mononuclear phagocyte system (MPS), improving therapeutic efficacy	DSG-PEG(2000)	PEGylated lipid with a 2000 Da PEG chain DSG (Distearoyl-glyceryl) is a glycerol-based lipid with two stearoyl chains, enhancing integration into cellular lipid bilayers. Provides improved nanoparticle stability, reduced immunogenicity, and prolonged circulation time

Information adapted from Wang et al. ³¹, Cardarelli et al. ³², Jörgensen et al. ³³, Funakoshi et al. ³⁴, Wang et al. ³⁵, Cullis & Felgner ³⁶

Table S7: Overview of ongoing clinical trials utilising liposomes for nucleic acid delivery.

Composition	NAs	Administratio n	Cancer	Phase	Sponsor	NCT + ASCO
DOPC	EphA2 siRNA	IV	Solid tumours	1	M.D. Anderson Cancer Center	NCT01591356 EphA2 gene targeting using neutral liposomal small interfering RNA (EPHARNA) delivery: A phase I clinical trial. Naing et al. ³⁷
Amphoteric liposomes (SMARTICLES®)	Double stranded RNA to activate CEBPA gene	IV	Advanced liver cancer	1	Mina Alpha Limited	NCT02716012 Phase lb dose escalation and cohort expansion study of the novel myeloid differentiating agent MTL-CEBPA in combination with sorafenib in patients with advanced hepatocellular carcinoma (HCC). Sarker et al. ³⁸
DOPC	ASO Bcl2	IV	Advanced Lymphoid Malignancies	1	Bio-Path Holdings, Inc.	NCT04072458 Making Sense of Antisense Oligonucleotide Therapeutics Targeting Bcl-2 Gagliardi & Ashizawa ³⁹

Table S8: Overview of ongoing clinical trials utilising lipoplexes for nucleic acid delivery.

Platforms	Composition	NAs	R.A.	Cancer	Phase	Sponsor	NCT + ASCO
Individualized Neoantigen Specific Immunotherapy	DOTMA	mRNA RO7198457 (=BNT122, = RO7198457) encoding patient specific TSA	IV	Untreated Advanced Melanoma	11	BioNTech SE / Genentech, Inc.	NCT03815058: Adoptive Cell Transfer and Vaccines in Melanoma: The Horizon Comes Into View Betof-Warner et al. 40
				NSCLC	11		NCT04267237 The clinical progress of mRNA vaccines and immunotherapies Barbier & Al. 41
				ctDNA-positive, Resected Stage II (High Risk) and Stage III Colorectal Cancer	II	-	NCT04486378 A phase 2 multicenter trial in patients with stage II/III colorectal cancer to compare efficacy of autogene cevumeran versus waiting. Kopetz et al. 42
				Solid tumour	1	-	NCT03289962
FixVac (Fix ed Vac cine)	DOTMA	mRNA encoding for TSA (BNT111)	IV	Advanced melanoma	II	BioNTech SE	NCT04526899
		mRNA encoding viral antigen (TSA) (BNT113)	-	HPV16-positive head and neck cancer	II		NCT04534205: Breaking Ground in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: Novel Therapies Beyond PD-L1 Immunotherapy Rosenberg et al. ⁴³
		mixture of six liposomally formulated RNAs each of which encodes for a different tumour- associated antigen. (BNT116)		1 st line metastatic NSCLC Advanced/metastatic NSCLC	I		NCT05142189
	DOTAP:Chol	P(plasmid)bi-shRNA™ EWS/FLI1 Type 1	IV	Advanced Ewing's Sarcoma	I	Gradalis, Inc.	NCT02736565 Pbi-shRNA™ EWS/FLI1 Type 1 LPX in Subjects With Advanced Ewing's Sarcoma Rao et al. ⁴⁴
SGT 53	DOTAP: DOPE	pcDNA53	IV	Metastatic Pancreatic Cancer	>	SynerGene Therapeutics, Inc.	NCT02340117 A phase II trial combining tumor- targeting <i>TP53</i> gene therapy with gemcitabine/nab-paclitaxel as a second-line treatment for metastatic pancreatic cancer. Leung et al. ⁴⁵

<u>Table S9</u>: Overview of ongoing clinical trials utilising LNPs for nucleic acid delivery.

NAs	Administratio n	Cancer	Phase	Sponsor	NCT + ASCO
mRNA-4157: Modified to	IV	Melanoma	11	Moderna Therapeutics Inc.	NCT03897881 (KEYNOTE-942) Distant metastasis-free survival results from the randomized, phase 2 mRNA-4157-P201/KEYNOTE- 942 trial. Khattak et al. ⁴⁶ Personalized anti-cancer vaccine combining mRNA and immunotherapy tested in melanoma trial Carvalho et al. ⁴⁷
encode patient-specific tumour antigens for Individualised Neoantigen Therapy (INT). V940 (formerly mRNA-4157) encodes up to 34 tumour- derived neoantigens tailored for each patient	IM	Melanoma		Merck Sharp & Dohme LLC	NCT05933577 INTerpath-001: Pembrolizumab with V940 (mRNA- 4157) versus pembrolizumab with placebo for adjuvant treatment of high-risk stage II-IV melanoma. Jeffrey S. Weber & Al. 48
	IM	Non-small Cell Lung Cancer	111	Merck Sharp & Dohme LLC	NCT06077760 The phase 3 INTerpath-002 study design: Individualized neoantigen therapy (INT) V940 (mRNA-4157) plus pembrolizumab vs placebo plus pembrolizumab for resected early-stage non–small- cell lung cancer (NSCLC). Lee et al. ⁴⁹
mRNA encoding cytokines: Includes OX40L, IL-23, and IL- 36γ to stimulate immune responses	Intratumoral	Solid tumours and lymphoma	I	ModernaTX, Inc.	NCT03739931 A phase I study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36γ, for intratumoral (iTu) injection alone and in combination with durvalumab. Patel & Al. ⁵⁰

mRNA encoding MYC: Therapeutic vaccine targeting the oncogene MYC	IV	HCC and other solid tumour types known for association with the MYC oncogene	1/11	Omega Therapeutics	NCT05497453 A phase 1/2 open-label study to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity of OTX-2002 as a single agent and in combination with standard of care in patients with hepatocellular carcinoma and other solid tumor types known for association with the MYC oncogene (MYCHELANGELO I). Rodriguez-Rivera et al. ⁵¹
mRNA-4359: Encodes PD-L1 and IDO1 antigens for immunotherapeutic vaccination	IM	Advanced Solid Tumours	1/11	ModernaTX, Inc.	NCT05533697 Phase 1/2 study of mRNA-4359 administered alone and in combination with immune checkpoint blockade in adult participants with advanced solid tumors. Powderly & Al. ⁵²
BNT142: Encodes a bispecific antibody targeting CLDN6 (an oncofoetal antigen) and CD3 for T-cell engagement.	IV	Claudin 6 (CLDN6)- positive advanced tumours.	1/11	BioNTech SE	NCT05262530 A phase I/II dose escalation trial with expansion cohorts to evaluate safety and preliminary efficacy of BNT142 in patients with prospectively confirmed claudin 6-positive solid tumors. Yap et al. ⁵³
BNT152/153: Encodes IL-7 (BNT152) or other cytokine- modulating mRNAs for enhanced immune function.	N/A	various solid tumour indications	I	BioNTech SE	NCT04710043 A systematic review of interleukin-2-based immunotherapies in clinical trials for cancer and autoimmune diseases Raeber et al. ⁵⁴

Glioblastoma-targeted mRNA: Encodes a fusion protein with eight tumour-associated epitopes relevant to glioblastoma, incorporating both HLA class I and II epitopes	IM	Resected Glioblastoma (GBM) or Astrocytoma With a Molecular Signature of Unmethylated Glioblastoma	1	CureVac SE	NCT05938387 Phase 1 dose-finding study to evaluate safety and tolerability of CVGBM in patients with newly diagnosed and surgically resected MGMT- unmethylated glioblastoma. Tabatabai et al. ⁵⁵
Viral antigen mRNA	IM	Epstein-Barr Virus- related Refractory Malignant Tumours	1	WestGene Biopharma	NCT05714748 Safety, tolerability, and immunogenicity of WGc-043 in subjects with EBV-positive cancers: Results from an investigator-initiated trial. Peng et al. ⁵⁶
Increasing doses of repeated boosts with a self-amplifying mRNA encoding a neo-antigen (after AdV injection)	IM	advanced metastatic solid tumours	1	Gritstone bio, Inc.	NCT03953235 Personalized viral-based prime/boost immunotherapy targeting patient-specific or shared neoantigens: Immunogenicity, safety, and efficacy results from two ongoing phase I studies. Drake et al. ⁵⁷
self-amplifying mRNA vector encoding 2 neoantigens (GRT- R902) + GRT-C901-adenoviral vector	SC	newly diagnosed metastatic colorectal cancer	11/111	Gritstone bio, Inc.	NCT0514172 Phase 2/3, randomized, open-label study of an individualized neoantigen vaccine (self-amplifying mRNA and adenoviral vectors) plus immune checkpoint blockade as maintenance for patients with newly diagnosed metastatic colorectal cancer (GRANITE). Hecht et al. ⁵⁸
siRNA (NBF-006): Targets GSTP (glutathione S-transferase P) to inhibit tumour proliferation	IV	advanced non-small cell lung (NSCLC), pancreatic (PANC), or colorectal cancer (CRC)	I	Nitto BioPharma, Inc.	NCT03819387 First-in-human dose-escalation study of NBF-006, a novel investigational siRNA targeting GSTP, in patients with non-small cell lung, pancreatic, or colorectal cancer. Tolcher et al. ⁵⁹

Type of polymers	Role	Syntheti c Or Natural	Name / Family	Advantage	Challenges	
		Synthetic	Polyethyleneimine (PEI) (branched or linear) NH_2 H_2N NH_2 NH_2 H_2N NH_2 NH_2 H_2N NH_2	High transfection efficiency	Toxicity and limited biodegradability due to the presence of non-degradable vinyl (-C-C-) and amide bonds	
Cationic	Gene delivery via electrostatic nic interactions with nucleic acids	ectrostatic eractions with	PBAE (linear)	Low toxicity Enhanced transfection efficiency Proton sponge for endosomal escape		
			PDMAEMA (branched or linear) $(H_3)^*$ $(H_3)^*$ H_3C^N CH ₃	Chemical flexibility		
			PAA (hyperbranched)	Low toxicity Enhanced transfection efficiency	Complex synthesis, optimization of disulphide linkages	
			PLL (linear or branched: dendrimer)	Advantages include gene delivery facilitated by hydrolysable ester bonds, high biocompatibility, and efficient nucleic acid binding	Potential toxicity associated with high molecular weight and non- biodegradability in certain formulations	

Table S10: Overview of the main polymers used for nucleic acids delivery nucleic acid delivery.

			Histidine-Lysine Co-polymers (HKP) R: 2 branch KHKHKHKGKHKHKHK (HKseries) or KHKHHKHHKHHKHHKHKK (HHKseries) R NH ₂	Efficient endosomal escape, siRNA and DNA complexation	Potential cytotoxicity, Serum stability
		Natural	Chitosan (CS) (linear) $\left[\begin{array}{c} OH \\ HO \\ HO \\ HO \\ NH_2 \\ OH \end{array}\right]_n$	Biocompatibility and biodegradability	Low solubility under physiological conditions
			Hyaluronic acid (HA) + cationic polymers $ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ Ho & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix}_{n} $	Biocompatibility, CD44 receptor targeting	Must be combined with cationic polymers for gene complexation
(hydrophobic rele	S Controlled drug release, structural support	Synthetic	PLGA (Copolymer) = Poly (Lactic-co-Glycolic acid) $Hof \int f f f f f f f f f f f f f f f f f f$	biodegradability through glycolic and lactic acids, high biocompatibility, and FDA approval for GMP manufacturing	Hydrophobicity, often requires cationic polymers for gene delivery Low nucleic acid loading,
			$\begin{array}{c} PMPC-25 \\ (CH_2 - CH_3 - CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 - CH$	Anti-fouling properties High biocompatibility Minimised immune response	Limited transfection efficiency for gene delivery
		Natural	Cyclodextrin $(f_{m})^{(m)} \to (f_{m})^{(m)} \to$	Biocompatible Facilitates drug solubilization and complexation Oral administration possible	Limited stability in physiological conditions
Anionic	Neutralize the positive charge of cationic polymers, enhancing nanoparticle stability and reducing the cytotoxicity associated with highly cationic polymers	Synthetic	PGA $H = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Can be functionalized with proteins Acts as a protective shield Reduces non-specific interactions with cells and proteins in the bloodstream	Rapid clearance by the body Limited stability in certain conditions

Information adapted from Chen et al. ⁶⁰, Piotrowski-Daspit et al. ⁶¹, Molinar et al. ⁶², and Smith et al. ⁶³

References for Supplementary Material

- 1 M. L. Varela, A. Comba, S. M. Faisal, A. Argento, A. Franson, M. N. Barissi, S. Sachdev, M. G. Castro and P. R. Lowenstein, Gene Therapy for High Grade Glioma: The Clinical Experience, *Expert Opin. Biol. Ther.*, 2023, 23, 145–161.
- 2 H. Jiang, D. H. Shin, Y. Yi, X. Fan, J. Gumin, J. He, A. G. Gillard, F. F. Lang, C. Gomez-Manzano and J. Fueyo, Adjuvant Therapy with Oncolytic Adenovirus Delta-24-RGDOX After Intratumoral Adoptive T-cell Therapy Promotes Antigen Spread to Sustain Systemic Antitumor Immunity, *Cancer Res. Commun.*, 2023, **3**, 1118–1131.
- 3 R. E. Sobol, K. B. Menander, S. Chada, D. Wiederhold, B. Sellman, M. Talbott and J. J. Nemunaitis, Analysis of Adenoviral p53 Gene Therapy Clinical Trials in Recurrent Head and Neck Squamous Cell Carcinoma, *Front. Oncol.*, 2021, **11**, 645745.
- 4 A. Lee, Nadofaragene Firadenovec: First Approval, Drugs, 2023, 83, 353–357.
- 5 B. L. Musher, B. G. Smaglo, W. Abidi, M. Othman, K. Patel, S. Jawaid, J. Jing, A. Brisco, J. Wenthe, E. Eriksson, G. J. Ullenhag, L. Sandin, B. Grilley, J. Leja-Jarblad, S. G. Hilsenbeck, M. K. Brenner, E. K. Rowinsky and A. S. I. Loskog, A phase I/II study of LOAd703, a TMZ-CD40L/4-1BBL-armed oncolytic adenovirus, combined with nab-paclitaxel and gemcitabine in advanced pancreatic cancer., J. Clin. Oncol., 2022, 40, 4138–4138.
- 6 LOAd703, an oncolytic virus-based immunostimulatory gene therapy, combined with chemotherapy for unresectable or metastatic pancreatic cancer (LOKON001): results from arm 1 of a non-randomised, single-centre, phase 1/2 study The Lancet Oncology, LOAd703, an oncolytic virus-based immunostimulatory gene therapy, combined with chemotherapy for unresectable or metastatic pancreatic cancer (LOKON001): results from arm 1 of a non-randomised, single-centre, phase 1/2 study The Lancet Oncology, LOAd703, an oncolytic virus-based immunostimulatory gene therapy, combined with chemotherapy for unresectable or metastatic pancreatic cancer (LOKON001): results from arm 1 of a non-randomised, single-centre, phase 1/2 study The Lancet Oncology, https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(24)00079-2/abstract, (accessed 14 September 2024).
- 7 Phase I trial of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy for the treatment of metastatic pancreatic cancer PMC, Phase I trial of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy for the treatment of metastatic pancreatic cancer PMC, https://www-ncbi-nlm-nih-gov.proxy.insermbiblio.inist.fr/pmc/articles/PMC7851493/, (accessed 19 September 2024).
- 8 Randomized controlled phase III trial of weekly paclitaxel ± ofranergene obadenovec (VB-111) for platinum-resistant ovarian cancer (OVAL Study/GOG 3018). | Journal of Clinical Oncology, Randomized controlled phase III trial of weekly paclitaxel ± ofranergene obadenovec (VB-111) for platinum-resistant ovarian cancer (OVAL Study/GOG 3018). | Study/GOG 3018). | Journal of Clinical Oncology, https://ascopubs-org.proxy.insermbiblio.inist.fr/doi/10.1200/JCO.2023.41.16_suppl.5505, (accessed 19 September 2024).
- 9 S. Makawita, J. M. Gibbs, D. R. McFadden, C. Porter, A. R. Shaw, C. Robertson, M. L. Woods, T. Wang, B. J. Grilley, H. E. Heslop, M. K. Brenner and M. Suzuki, Binary oncolytic adenovirus in combination with HER2-specific autologous CAR VST for treatment of advanced HER2-positive solid tumors (VISTA)., J. Clin. Oncol., 2024, 42, TPS2679–TPS2679.
- 10 Final results of controlled IL-12 monotherapy in adults with grade III or IV gliomas. | Journal of Clinical Oncology, Final results of controlled IL-12 monotherapy in adults with grade III or IV gliomas. | Journal of Clinical Oncology, https://ascopubs-org.proxy.insermbiblio.inist.fr/doi/10.1200/JCO.2020.38.15_suppl.3040, (accessed 19 September 2024).
- 11 N. Ji, D. Weng, C. Liu, Z. Gu, S. Chen, Y. Guo, Z. Fan, X. Wang, J. Chen, Y. Zhao, J. Zhou, J. Wang, D. Ma and N. Li, Adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of recurrent high-grade glioma, *Oncotarget*, 2016, 7, 4369–4378.
- 12 C. Aggarwal, A. R. Haas, S. Metzger, L. K. Aguilar, E. Aguilar-Cordova, A. G. Manzanera, E. W. Alley, T. L. Evans, R. B. Cohen, J. Bauml, C. J. Langer, S. Albelda and D. Sterman, Phase I study of gene mediated cytotoxic immunotherapy (GMCI) for patients with malignant pleural effusion (MPE)., J. Clin. Oncol., 2016, 34, 3081–3081.
- 13 L. A. Wheeler, A. G. Manzanera, S. D. Bell, R. Cavaliere, J. M. McGregor, J. C. Grecula, H. B. Newton, S. S. Lo, B. Badie, J. Portnow, B. S. Teh, T. W. Trask, D. S. Baskin, P. Z. New, L. K. Aguilar, E. Aguilar-Cordova and E. A. Chiocca, Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma, Neuro-Oncol., 2016, 18, 1137–1145.

- 14 Phase I study of gene-mediated cytotoxic immunotherapy with AdV-tk as adjuvant to surgery and radiation for pediatric malignant glioma and recurrent ependymoma - PubMed, Phase I study of gene-mediated cytotoxic immunotherapy with AdV-tk as adjuvant to surgery and radiation for pediatric malignant glioma and recurrent ependymoma - PubMed, https://pubmed-ncbi-nlm-nih-gov.proxy.insermbiblio.inist.fr/30883662/, (accessed 19 September 2024).
- 15 Candel Therapeutics Receives FDA Orphan Drug Designation for CAN-2409 for the Treatment of Pancreatic Cancer | Candel Therapeutics, Inc, Candel Therapeutics, Receives FDA Orphan Drug Designation for CAN-2409 for the Treatment of Pancreatic Cancer | Candel Therapeutics, Inc, https://ir.candeltx.com/news-releases/news-release-details/candel-therapeutics-receives-fda-orphan-drug-designation-can/, (accessed 19 September 2024).
- 16 I. Tsaur, M. P. Brandt, E. Juengel, C. Manceau and G. Ploussard, Immunotherapy in prostate cancer: new horizon of hurdles and hopes, World J. Urol., 2021, 39, 1387– 1403.
- 17 Overall survival after treatment with CAN-2409 plus valacyclovir in combination with continued ICI in patients with stage III/IV NSCLC with an inadequate response to ICI. | Journal of Clinical Oncology, Overall survival after treatment with CAN-2409 plus valacyclovir in combination with continued ICI in patients with stage III/IV NSCLC with an inadequate response to ICI. | Journal of Clinical Oncology, https://ascopubs.org/doi/10.1200/JCO.2024.42.16 suppl.8634, (accessed 22 July 2024).
- 18 D. Li, A. F. Shields, H. Mamdani, J. Leddon, P. M. Travis, C. A. Egelston, O. Colunga Flores, S. R. Hamilton, J. Austria, A. Seiz, S. Yavrom, J. C. H. Byon, P. P. Woodard and G. A. Wilkinson, Oncolytic virus CF33-hNIS monotherapy for the treatment of gastrointestinal (GI) malignancies., J. Clin. Oncol., 2024, 42, 749–749.
- 19 Y. Yuan, C. Egelston, O. Colunga Flores, S. Chaurasiya, D. Lin, H. Chang, L. M. O. Chong, A. Seiz, M. Shah, W. H. Meisen, A. Tang, N. Martinez, W. Pickett, M. Murga, S. E. Yost, D. Stewart, J. Zhang, N. Ede, B. Modi, J. Kessler, J. Rand and Y. Fong, **CF33-hNIS-anti-PD-L1 oncolytic virus followed by trastuzumab-deruxtecan in a patient with metastatic triple negative breast cancer: a case study**, *Ther. Adv. Med. Oncol.*, 2023, **15**, 17588359231210675.
- 20 D. Li, A. Seiz, S. H. Fein, J. C. H. Byon, G. A. Wilkinson and P. P. Woodard, Combination therapy with the oncolytic virus CF33-CD19 and blinatumomab for the treatment of advanced solid tumors., J. Clin. Oncol., 2024, 42, TPS2687–TPS2687.
- 21 B. B. Mendes, J. Conniot, A. Avital, D. Yao, X. Jiang, X. Zhou, N. Sharf-Pauker, Y. Xiao, O. Adir, H. Liang, J. Shi, A. Schroeder and J. Conde, Nanodelivery of nucleic acids, Nat. Rev. Methods Primer, 2022, 2, 1–21.
- 22 D. V. Gladkikh, A. V. Sen Kova, I. V. Chernikov, T. O. Kabilova, N. A. Popova, V. P. Nikolin, E. V. Shmendel, M. A. Maslov, V. V. Vlassov, M. A. Zenkova and E. L. Chernolovskaya, Folate-Equipped Cationic Liposomes Deliver Anti-MDR1-siRNA to the Tumor and Increase the Efficiency of Chemotherapy, Pharmaceutics, 2021, 13, 1252.
- 23 L. Wei, X.-Y. Guo, T. Yang, M.-Z. Yu, D.-W. Chen and J.-C. Wang, Brain tumor-targeted therapy by systemic delivery of siRNA with Transferrin receptor-mediated coreshell nanoparticles, Int. J. Pharm., 2016, 510, 394–405.
- 24 Y. Fidan, S. Muçaj, S. S. Timur and R. N. Gürsoy, Recent advances in liposome-based targeted cancer therapy, J. Liposome Res., 2023, 0, 1–19.
- 25 Y. S. Park, Tumor-Directed Targeting of Liposomes, Biosci. Rep., 2002, 22, 267–281.
- 26 C. Mamot, D. C. Drummond, C. O. Noble, V. Kallab, Z. Guo, K. Hong, D. B. Kirpotin and J. W. Park, Epidermal Growth Factor Receptor–Targeted Immunoliposomes Significantly Enhance the Efficacy of Multiple Anticancer Drugs In vivo, Cancer Res., 2005, 65, 11631–11638.
- 27 M. Breidenbach, D. T. Rein, M. Everts, J. N. Glasgow, M. Wang, M. J. Passineau, R. D. Alvarez, N. Korokhov and D. T. Curiel, Mesothelin-mediated targeting of adenoviral vectors for ovarian cancer gene therapy, *Gene Ther.*, 2005, **12**, 187–193.
- 28 N. Gholamian Dehkordi, F. Elahian, P. Khosravian and S. A. Mirzaei, Intelligent TAT-coupled anti-HER2 immunoliposomes knock downed MDR1 to produce chemosensitize phenotype of multidrug resistant carcinoma, J. Cell. Physiol., 2019, 234, 20769–20778.
- 29 K. Ma, W. Li, G. Zhu, S. Sun, H. Chi, Y. Yin, H. Diao, X.-J. Xing, Z. Guo, L. Wang, W. Xu, C. Cui and J. Xu, Functionalized PDA/DEX-PEI@HA nanoparticles combined with sleeping-beauty transposons for multistage targeted delivery of CRISPR/Cas9 gene, *Biomed. Pharmacother. Biomedecine Pharmacother.*, 2021, 142, 112061.
- 30 S. Yu, X. Bi, L. Yang, S. Wu, Y. Yu, B. Jiang, A. Zhang, K. Lan and S. Duan, **Co-Delivery of Paclitaxel and PLK1-Targeted siRNA Using Aptamer-Functionalized Cationic** Liposome for Synergistic Anti-Breast Cancer Effects In Vivo, J. Biomed. Nanotechnol., 2019, **15**, 1135–1148.

- 31 T. Wang, L. M. Larcher, L. Ma and R. N. Veedu, Systematic Screening of Commonly Used Commercial Transfection Reagents towards Efficient Transfection of Single-Stranded Oligonucleotides, Mol. J. Synth. Chem. Nat. Prod. Chem., 2018, 23, 2564.
- 32 F. Cardarelli, L. Digiacomo, C. Marchini, A. Amici, F. Salomone, G. Fiume, A. Rossetta, E. Gratton, D. Pozzi and G. Caracciolo, **The intracellular trafficking mechanism of** Lipofectamine-based transfection reagents and its implication for gene delivery, *Sci. Rep.*, 2016, *6*, 25879.
- 33 A. M. Jörgensen, R. Wibel and A. Bernkop-Schnürch, Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients, Small, 2023, 19, 2206968.
- 34 Y. Funakoshi, Y. Iwao, S. Noguchi and S. Itai, Effect of Alkyl Chain Length and Unsaturation of the Phospholipid on the Physicochemical Properties of Lipid Nanoparticles, *Chem. Pharm. Bull. (Tokyo)*, 2015, 63, 731–6.
- 35 Z. Wang, W. Li, Y. Jiang, J. Park, K. M. Gonzalez, X. Wu, Q.-Y. Zhang and J. Lu, Cholesterol-modified sphingomyelin chimeric lipid bilayer for improved therapeutic delivery, *Nat. Commun.*, 2024, **15**, 2073.
- 36 P. R. Cullis and P. L. Felgner, The 60-year evolution of lipid nanoparticles for nucleic acid delivery, Nat. Rev. Drug Discov., 2024, 1–14.
- 37 A. Naing, G. Lopez-Berestein, S. Fu, A. M. Tsimberidou, S. Pant, S. A. Piha-Paul, F. Janku, D. S. Hong, S. Sulovic, X. Meng, A. A. Jazaeri, C. S. Ng, D. D. Karp, V. Subbiah, F. Meric-Bernstam, R. Mitra, S. Wu, A. Sood and R. L. Coleman, EphA2 gene targeting using neutral liposomal small interfering RNA (EPHARNA) delivery: A phase I clinical trial., J. Clin. Oncol., 2017, 35, TPS2604–TPS2604.
- 38 D. Sarker, M. Sodergren, E. R. Plummer, B. Basu, T. Meyer, K.-W. Huang, T. R. J. Evans, D. Spalding, Y. T. Ma, D. H. Palmer, C. E. Chee, D. J. Pinato, V. Reebye, D. McVeigh, N. Raulf, J. Vasara, P. Andrikakou, R. Habib, D. Blakey and N. A. Habib, Phase Ib dose escalation and cohort expansion study of the novel myeloid differentiating agent MTL-CEBPA in combination with sorafenib in patients with advanced hepatocellular carcinoma (HCC)., J. Clin. Oncol., 2020, 38, 4601–4601.
- 39 M. Gagliardi and A. T. Ashizawa, Making Sense of Antisense Oligonucleotide Therapeutics Targeting Bcl-2, Pharmaceutics, 2022, 14, 97.
- 40 Adoptive Cell Transfer and Vaccines in Melanoma: The Horizon Comes Into View | American Society of Clinical Oncology Educational Book, Adoptive Cell Transfer and Vaccines in Melanoma: The Horizon Comes Into View | American Society of Clinical Oncology Educational Book, https://ascopubs-org.proxy.insermbiblio.inist.fr/doi/10.1200/EDBK 351114, (accessed 20 September 2024).
- 41 A. J. Barbier, A. Y. Jiang, P. Zhang, R. Wooster and D. G. Anderson, The clinical progress of mRNA vaccines and immunotherapies, Nat. Biotechnol., 2022, 40, 840–854.
- 42 S. Kopetz, V. K. Morris, V. Alonso-Orduña, P. Garcia-Alfonso, M. Reboredo, A. Fernandez Montes, J. Maurel, D. Paez, A. C. Reinacher-Schick, T. Höhler, J. Carrasco, B. M. Galligan, L. Manning, L. Preußner, Ö. Tureci and U. Sahin, A phase 2 multicenter, open-label, randomized, controlled trial in patients with stage II/III colorectal cancer who are ctDNA positive following resection to compare efficacy of autogene cevumeran versus watchful waiting., J. Clin. Oncol., 2022, 40, TPS3641–TPS3641.
- 43 A. J. Rosenberg, C. A. Perez, W. Guo, J. M. de Oliveira Novaes, K. F. O. da Silva Reis, P. W. McGarrah and K. A. R. Price, Breaking Ground in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: Novel Therapies Beyond PD-L1 Immunotherapy, Am. Soc. Clin. Oncol. Educ. Book, 2024, 44, e433330.
- 44 D. D. Rao, C. Jay, Z. Wang, X. Luo, P. Kumar, H. Eysenbach, M. Ghisoli, N. Senzer and J. Nemunaitis, **Preclinical Justification of pbi-shRNA EWS/FLI1 Lipoplex (LPX)** Treatment for Ewing's Sarcoma, *Mol. Ther.*, 2016, 24, 1412–1422.
- 45 C. Leung, M. Barve, M.-S. Wu, K. Pirollo, J. Strauss, W.-C. Liao, S.-H. Yang, R. Nunan, J. Adams, J. Harford and E. H. Chang, A phase II trial combining tumor-targeting TP53 gene therapy with gemcitabine/nab-paclitaxel as a second-line treatment for metastatic pancreatic cancer., J. Clin. Oncol., 2021, 39, 4139–4139.
- 46 Distant metastasis-free survival results from the randomized, phase 2 mRNA-4157-P201/KEYNOTE-942 trial. | Journal of Clinical Oncology, Distant metastasis-free survival results from the randomized, phase 2 mRNA-4157-P201/KEYNOTE-942 trial. | Journal of Clinical Oncology, https://ascopubs-org.proxy.insermbiblio.inist.fr/doi/10.1200/JCO.2023.41.17 suppl.LBA9503, (accessed 20 September 2024).
- 47 T. Carvalho, Personalized anti-cancer vaccine combining mRNA and immunotherapy tested in melanoma trial, Nat. Med., 2023, 29, 2379–2380.
- 48 J. S. Weber, J. J. Luke, M. S. Carlino, M. A. Khattak, R. S. Meehan, M. Brown, J. Zhang, C. Krepler, J. P. Duic and G. V. Long, INTerpath-001: Pembrolizumab with V940 (mRNA-4157) versus pembrolizumab with placebo for adjuvant treatment of high-risk stage II-IV melanoma., J. Clin. Oncol., 2024, 42, TPS9616–TPS9616.

- 49 J. M. Lee, J. Spicer, S. Nair, A. Khattak, M. Brown, R. S. Meehan, N. M. Shariati, X. Deng, A. Samkari and J. E. Chaft, The phase 3 INTerpath-002 study design: Individualized neoantigen therapy (INT) V940 (mRNA-4157) plus pembrolizumab vs placebo plus pembrolizumab for resected early-stage non-small-cell lung cancer (NSCLC)., J. Clin. Oncol., 2024, 42, TPS8116–TPS8116.
- 50 M. R. Patel, T. M. Bauer, A. Jimeno, D. Wang, P. LoRusso, K. T. Do, S. M. Stemmer, C. Maurice-Dror, R. Geva, S. Zacharek, A. S. Laino, J. Sun, J. Frederick, H. Zhou, W. Randolph, P. S. Cohen, R. S. Meehan and R. J. Sullivan, A phase I study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36γ, for intratumoral (iTu) injection alone and in combination with durvalumab., J. Clin. Oncol., 2020, 38, 3092–3092.
- 51 I. I. Rodriguez-Rivera, T.-H. Wu, R. Ciotti, W. Senapedis, K. Sullivan, J. Z. Gao, S. Palakurthi, T. McCauley and Y. Moore, A phase 1/2 open-label study to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity of OTX-2002 as a single agent and in combination with standard of care in patients with hepatocellular carcinoma and other solid tumor types known for association with the MYC oncogene (MYCHELANGELO I)., J. Clin. Oncol., 2023, 41, TPS627–TPS627.
- 52 J. D. Powderly, R. J. Sullivan, M. Gutierrez, A. Khattak, S. S. Thomas, A. Jimeno, S. Pascarella, L. Zhu, M. Morrissey, R. S. Meehan, F. Barlaskar, M. Brown and D. R. Spigel, Phase 1/2 study of mRNA-4359 administered alone and in combination with immune checkpoint blockade in adult participants with advanced solid tumors., J. Clin. Oncol., 2023, 41, TPS2676–TPS2676.
- 53 T. A. Yap, K. P. Papadopoulos, E. Garralda, A. I. Spira, E. Calvo, O. Saavedra, J. L. Ramon-Patino, C. Stadler, S. Koseoglu, P. K. Chang, U. Ellinghaus, C. Lindemann, E.-M. Ewen, E. Zyto, A. Zamorski, J. L. Martinez, L. De Mattos-Arruda, I. Celik, Ö. Türeci and U. Sahin, A phase I/II dose escalation trial with expansion cohorts to evaluate safety and preliminary efficacy of BNT142 in patients with prospectively confirmed claudin 6-positive solid tumors., J. Clin. Oncol., 2023, 41, TPS2669–TPS2669.
- 54 M. E. Raeber, D. Sahin, U. Karakus and O. Boyman, A systematic review of interleukin-2-based immunotherapies in clinical trials for cancer and autoimmune diseases, *eBioMedicine*.
- 55 G. Tabatabai, L. Von Baumgarten, M. J. Van Den Bent, M. C. Burger, P. Freres, M. Glas, P. Hau, U. Herrlinger, I. Mildenberger, B. Neyns, H. S. Schafer, C. Seidel, R. Galot, A. Wick, M. H. Falk, L. L. de Freitas Chama, P. Kelemen, S. D. Koch, P. Romer Roche, S. U. Gnad-Vogt, and CV-GBLM-001 Study Group, Phase 1 dose-finding study to evaluate safety and tolerability of CVGBM in patients with newly diagnosed and surgically resected MGMT-unmethylated glioblastoma., J. Clin. Oncol., 2024, 42, TPS2095–TPS2095.
- 56 X. Peng, X. He, W. Zhang, H. Huang, X. Li, J. Chen, Y. Wei and X. Song, Safety, tolerability, and immunogenicity of WGc-043 in subjects with EBV-positive cancers: Results from an investigator-initiated trial., J. Clin. Oncol., 2024, 42, 139–139.
- 57 Personalized viral-based prime/boost immunotherapy targeting patient-specific or shared neoantigens: Immunogenicity, safety, and efficacy results from two ongoing phase I studies. | Journal of Clinical Oncology, Personalized viral-based prime/boost immunotherapy targeting patient-specific or shared neoantigens: Immunogenicity, safety, and efficacy results from two ongoing phase I studies. | Journal of Clinical Oncology, Personalized viral-based prime/boost immunotherapy targeting patient-specific or shared neoantigens: Immunogenicity, safety, and efficacy results from two ongoing phase I studies. | Journal of Clinical Oncology, https://ascopubs-org.proxy.insermbiblio.inist.fr/doi/10.1200/JCO.2020.38.15 suppl.3137, (accessed 20 September 2024).
- 58 J. R. Hecht, A. Shergill, M. G. Goldstein, B. Fang, M. T. Cho, H.-J. Lenz, L. D. Berim, P. E. Oberstein, R. A. Safyan, V. Sawhney, H. P. Soares, D. R. Spigel, A. I. Spira, A. R. Ferguson, B. Chauder and A. Starodub, Phase 2/3, randomized, open-label study of an individualized neoantigen vaccine (self-amplifying mRNA and adenoviral vectors) plus immune checkpoint blockade as maintenance for patients with newly diagnosed metastatic colorectal cancer (GRANITE)., J. Clin. Oncol., 2022, 40, TPS3635–TPS3635.
- 59 A. W. Tolcher, A. I. Spira, J. J. Nemunaitis, A. L. Vandross, H. Mamdani, Z. O'Brien, A. Huynh, Z. Albaugh, J. Gullbo and S. Zabludoff, First-in-human dose-escalation study of NBF-006, a novel investigational siRNA targeting GSTP, in patients with non-small cell lung, pancreatic, or colorectal cancer., J. Clin. Oncol., 2023, 41, 3084–3084.
- 60 C.-K. Chen, P.-K. Huang, W.-C. Law, C.-H. Chu, N.-T. Chen and L.-W. Lo, Biodegradable Polymers for Gene-Delivery Applications, Int. J. Nanomedicine, 2020, 15, 2131–2150.
- 61 A. S. Piotrowski-Daspit, A. C. Kauffman, L. G. Bracaglia and W. M. Saltzman, Polymeric Vehicles for Nucleic Acid Delivery, Adv. Drug Deliv. Rev., 2020, 156, 119–132.

- 62 C. Molinar, M. Tannous, D. Meloni, R. Cavalli and A. Scomparin, Current Status and Trends in Nucleic Acids for Cancer Therapy: A Focus on Polysaccharide-Based Nanomedicines, *Macromol. Biosci.*, 2023, 23, 2300102.
- 63 T. T. Smith, S. B. Stephan, H. F. Moffett, L. E. McKnight, W. Ji, D. Reiman, E. Bonagofski, M. E. Wohlfahrt, S. P. S. Pillai and M. T. Stephan, In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers, *Nat. Nanotechnol.*, 2017, 12, 813–820.