Supporting Information

Morphology-tuned MnO_x/TiO₂ nanocatalysts for recycling PET plastic waste with biomass-derived ethylene glycol

Bhattu Swapna^a, Madam Bobby Barnabas^a, Pragya Moni Gogoi^b, Pankaj Bharali^b, Giridhar Madras^c, Putla Sudarsanam^{a,*}

^aDepartment of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502284, Telangana, India

^bDepartment of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India

^cDepartment of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, Telangana, India

*Email: sudarsanam.putla@chy.iith.ac.in

1. Characterization studies of the catalysts and BHET monomer

The NMR spectra (¹H, ¹³C, and DEPT 135°) were obtained using a Bruker Avance III 400 MHz/54 mm FT-NMR spectrophotometer to confirm the formation of BHET qualitatively. The molecular weight of the BHET monomer was confirmed by the high-resolution mass spectrum (HR-MS) instrument (Agilent 6538 UHD Q-TOF) in electron spray ionization mode contains the sodium metal ionization (Na⁺⁾ and potassium metals (K⁺) at atmospheric pressure chemical ionization. Powder XRD analysis was conducted utilizing a Malvern PANalytical non-ambient XRD Empyrean-DY2584 equipped with 45 kW & 40 mA to elucidate crystal planes and phases of TiO₂ and MnO_x. The Ni-filtered Cu Kα radiation was used as the X-ray source. The TEM analysis of TiO₂ and MnO_x/TiO₂-NR materials was conducted on a JEOL (JEM F200) instrument with a 200 kV accelerating voltage electron beam to determine the particle size, shape, and dispersion of MnO_x and TiO₂ particles. A carbon-coated copper grid with a 200-mesh size was employed for TEM analysis. The specific surface areas, pore sizes, and pore volumes of pristine TiO₂ and MnO_x/TiO₂ catalysts were evaluated by N₂ adsorption-desorption analysis at -196 °C (liquid N₂ temperature). The measurements were performed on an Autosorb iQ Station 1 instrument, employing the Brunauer-Emmett-Teller (BET) method and Barrett-Joyner-Halenda (BJH) model. Before analysis, all samples underwent vacuum drying at 200 °C for 2 h to remove physisorbed species.

The XPS analysis was conducted under ultra-high vacuum conditions on an AXIS Supra with Al K α radiation to determine the oxidation states of Mn, Ti, and O as well as the changes in their binding energies. The charge correction of the binding energies of Mn, Ti, and O of the catalysts was executed using the adventitious carbon at 284.6 eV. The CO₂-TPD measurements were carried out using a ChemBET Pulsar automatic chemisorption analyzer (MAKE Quantachrome Instruments), which was equipped with diffusion-type oxidation and CO₂-resistant TCD filaments. The fits were generated and analyzed by the in-built analyzer 'Quantachrome TPRWin v4.10'. The catalysts were pretreated at 120 °C for 30 min under a He flow and then cooled to 40 °C, followed by CO₂ adsorption with pure CO₂ (99.9% purity) at a flow rate of 50 mL min⁻¹ for 20 min. The amount of basic sites was estimated by measuring the amount of CO₂ desorbed by increasing the temperature to 800 °C with ramping of 10 °C min⁻¹.

Fig. S1. TEM images of (a) TiO_2 nanosheets (NS) and (b) TiO_2 nanotubes (NT).

Fig. S2. N_2 adsorption-desorption isotherms of TiO₂ and MnO_x/TiO₂ catalysts.

S. No.	Catalyst	BET surface area (m ² /g)	Pore volume (cm ³ /g)	Pore size (nm)
1	TiO ₂ -NS	198	0.604	26.13
2	TiO ₂ -NT	185	0.575	25.20
3	TiO ₂ -NR	129	0.414	25.11
4	MnO _x /TiO ₂ -NS	152	0.326	25.06
5	MnO _x /TiO ₂ -NT	138	0.288	25.14
6	MnO _x /TiO ₂ -NR	94	0.307	26.18

Table S1: BET surface area, average pore volume, and average pore size of TiO_2 and MnO_x/TiO_2 nanocatalysts.

Fig. S3. ¹H NMR analysis of BHET monomer.

Fig. S4. ¹³C NMR analysis of BHET monomer.

Fig. S5. DEPT-135 NMR analysis of BHET monomer.

Fig. S6. HR-MS analysis of BHET monomer.

Fig. S7. (a) Mn 2p, (b) Ti 2p, and (c) O 1s XP spectra of fresh and reused MnO_x/TiO_2 -NR catalysts.