Electronic Supplementary Material (ESI) for Nanoscale

Section S1 Details on the residual alkali titration method:

To ensure reliable data, the stirring time was determined based on changes in pH, and each sample was tested three times, with the average value reported. For titration, 5 g of NCA material and 20 mL of pure water were used in each test. Considering the alkaline nature of Na_2CO_3 and NaOH, a two-step titration method was developed using 0.1 mol/L HCl with phenolphthalein and methyl red as indicators. The values in Figure 1b were calculated using Equations (1) and (2), where V1 (mL) represents the volume of HCl used in the first step with phenolphthalein, V2 (mL) is the total volume of HCl used in the two steps, and m (g) is the mass of the cathode material. Due to the high reactivity of sodium, residual alkali, formed from reactions with H_2O and CO_2 in air, cannot be completely eliminated.

$$NaCO_3\% = \frac{\frac{V_2 - V_1}{1000} \times C_{HCI} \times 105.99 \times 4}{m}$$
 (1)

$$NaOH\% = \frac{\frac{2V_1 - V_2}{1000} \times C_{HCl} \times 39.997 \times 4}{m}$$
 (2)

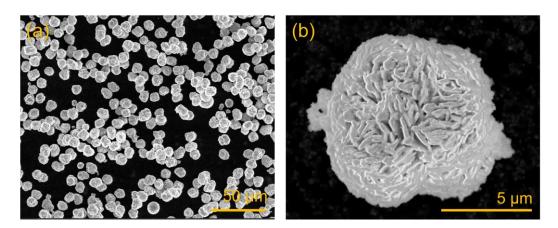


Figure S1 SEM images of the NFM-P materials.

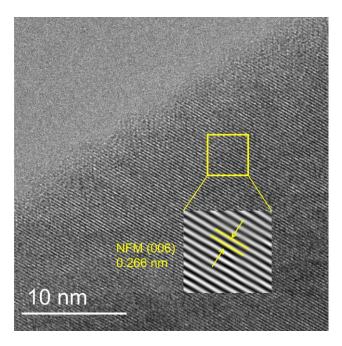
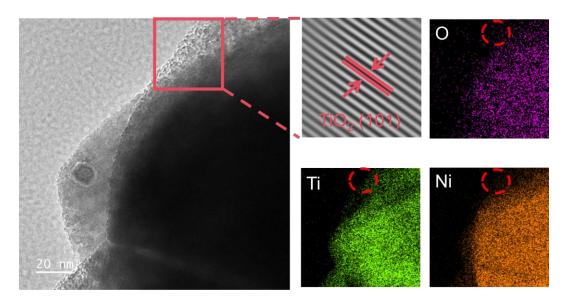



Figure S2 HRTEM image of the NFM-P materials

Figure S3 The TiO_2 regions observed in the TEM and EDS-Mapping images of the NFMT-B materials.

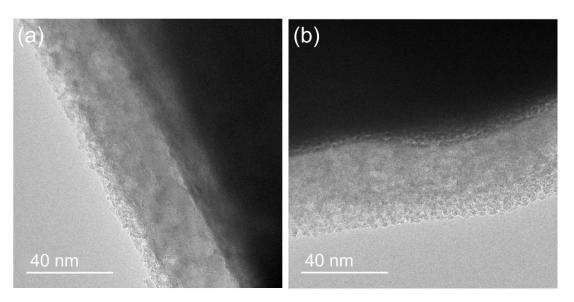


Figure S4 HRTEM image of the NFMT-L materials

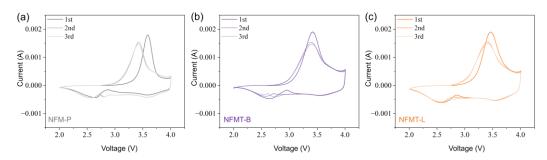


Figure S5 Cyclic voltammetry (CV) curves for the first three cycles of three cathodes.

 Table S1 The Rietveld refinement XRD data of the NFM-P sample

	X	y	Z	Occupancy
Na	0	0	0.5	0.9553
Ni	0	0	0	0.3239
Fe	0	0	0	0.3318
Mn	0	0	0	0.3303
Ti	0	0	0	0
O	0	0	0.267	1.0571
$R_{ m wp}$	0.0676			

Table S2 The Rietveld refinement XRD data of the NFMT-B sample.

	X	y	Z	Occupancy
Na	0	0	0.5	0.9513
Ni	0	0	0	0.3219
Fe	0	0	0	0.3310
Mn	0	0	0	0.3264
Ti	0	0	0	0.0012
O	0	0	0.267	1.0577
$oldsymbol{R}_{ ext{wp}}$			0.0699	

 Table S3 The Rietveld refinement XRD data of the NFMT-L sample.

	X	y	Z	Occupancy
Na	0	0	0.5	0.9486
Ni	0	0	0	0.3233
Fe	0	0	0	0.3307
Mn	0	0	0	0.3295
Ti	0	0	0	0.0010
O	0	0	0.266	1.0577
$R_{ m wp}$	0.0597			

Table S4 R_s and R_{ct} values of EIS fitting results

$R\left(\Omega\right)$	NFM-P	NFMT-B	NFMT-L
$R_{\rm s}$	5.893	5.625	5.474
R_{ct}	1085.71	986	652.3