1 Supplementary Information

2	Efficient near-infrared and visible regime spatial self-phase
3	modulation in transition metal carbonitride Ti ₃ CN
4	Jiawei Cao,ª Xiaodan Xu,ª Yixuan Huang, ^{b,c} Tengdong Zhang,ª Ying Liu,ª Haotian
5	Yang, ^a Jimin Zhao, ^{*b,c,d} Jun Li, ^{*a} and Yanling Wu ^{*a}
6	^a State Key Laboratory of Metastable Materials Science and Technology & Hebei Key
7	Laboratory of Microstructural Material Physics, School of Science, Yanshan University,
8	Qinhuangdao 066004, China
9	^b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese
10	Academy of Sciences, Beijing 100190, China
11	^c School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049,
12	China
13	^d Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
14	[†] <i>Electronic supplementary information (ESI) available.</i>
15	*Corresponding author, Email: imphao@inhy ac.cn: lici007@ysu.edu.cn: ylwu@ysu.edu.cn

16

17 S1. Sample preparation of Ti₃CN flake suspension

The few-layer MXene Ti_3CN dispersion we bought is at the concentration of 5 mg/ml (ultrapure water as the solvent). We dilute the pre-prepared Ti_3CN solution to a concentration of 0.05 mg/ml by adding the solvent ultrapure water. Then we execute a sonicating operation for the solution for 30 minutes (at 40 kHz frequency) to obtain the dispersed suspension, which subsequently is transferred into a standard cuvette with a thickness of 10 mm on standby for SSPM measurements. In parallel, we conducted the control SSPM experiments on solvent, where no SSPM effect was observed.

25 S2. Key parameters of laser beams in SSPM experiment

A series of continuous-wave laser beams (405, 473, 532, 671, 721, 914 and 1064 nm) are used to investigate SSPM effect. For Gaussian beams, we define the radius of beam waist of the laser incident beam ω_0 is approximately equal to the the 1/e² intensity radius of laser beams. When the beam passes through a lens with a focal length of f =200 mm, the radius of the beam waist at the focal point is defined as ω_0 ', where $\omega_0' \approx \frac{\lambda}{\pi \omega_0} f$ 1 $\omega_0' \approx \frac{\lambda}{\pi \omega_0} f$. In this work, the distance between the focusing lens and the center of 2 cuvette (*l*) is fixed at 160 mm. Therefore, the 1/e² intensity radius at the center of cuvette 3 can be calculated by the equation $\omega(z) = \omega_0' \sqrt{1 + (z/z_R)^2}$, where $\omega(z)$ is the 1/e² 4 intensity radius of laser beam when the distance between the focal point and the center

5 of cuvette is z (here z = 40 mm), $z_R \approx \frac{\pi \omega_0^2}{\lambda}$, the beam area at the center of cuvette is S 6 $= \pi(\omega(z))^2$.

λ (nm)	$\omega_0 (\mathrm{mm})$	z (mm)	ω_0' (mm)	$\omega(z) (\mathrm{mm})$	S (mm ²)
405	0.80	40	0.032	0.163	0.0835
473	0.71	40	0.042	0.148	0.0690
532	0.77	40	0.044	0.160	0.0804
671	0.86	40	0.050	0.179	0.1000
721	0.64	40	0.072	0.147	0.0679
914	0.89	40	0.065	0.190	0.1134
1064	0.72	40	0.094	0.172	0.0929

7 Table S1. Detailed key parameters of laser beams in SSPM experiment.

8 S3. Process of SSPM diffraction rings formation and deformation

For suspension sample, the stable SSPM rings formation includes two processes: 9 one is the process varying from the ring generation until to its maximum in its ring 10 number and diameter, another is the process varying from the maximum rings to the 11 stable deformation rings. Since the second process originate from the thermal-12 convection-induced ring deformation, we only focus on the first process related to the 13 electron coherence.^{1,2} In Fig. S1, as a typical example, we show the evolution process 14 15 of SSPM diffraction rings of Ti₃CN suspension over the time at 532 nm with the incident intensity of 260.0 W/cm². There are two clear processes: One is that the 16 number of rings increases from zero to a maximum taking 0.33 s, which is a nonlinear 17 process of laser-induced electron/hole coherence establishment.¹ Another one is that 18

- 1 the upper half portion of ring patterns begins to collapse from the maximum until stable
- 2 taking 1.84 s, which is the process of thermal convection-induced ring deformation
- 3 (thermal effect).²

4

- 5 Fig. S1. Process of SSPM diffraction rings evolution over the time for the Ti₃CN flake
- 6 suspension at 532 nm excitation.

7 S4. Typical SSPM ring patterns with maximum diameters

8

9 Fig. S2. Typical SSPM ring patterns with maximum diameters under 405 nm, 671 nm
10 and 721 nm laser beam excitation.

11 S5. Estimation of the effective layer number for Ti₃CN and Ti₃AlCN suspensions

12 The number of effective layers of the laser beam passing through the Ti_3CN 13 suspension is estimated by the concentration estimation method.¹ The Ti_3CN flakes are 1 uniformly dispersed in solvent and there is no sediment at the bottom of cuvette. The 2 concentration of the Ti₃CN suspension was $\rho = 0.05$ g/L (2.948 × 10⁻⁴ mol/L). The 3 volume of solution contained in the cuvette is $V = 4 \times 10^{-3}$ L. Thus, the total number of 4 molecules in the suspensions is $M = \rho \times V \times N_A = 3.549 \times 10^{17}$ for Ti₃CN. Ti₃CN 5 possesses a crystal structure with the P6₃/mmc space group, where the lattice constants 6 of Ti₃CN are a = 3.02 Å and b = 3.02 Å. Hence, a single effective layer contains m =7 S/S_{ab} = S/(sin 60°)·(a·b) = 5.064×10¹⁵ molecules for Ti₃CN. The layer number is given 8 by $N_{\text{eff}} = M/m$. We estimate the effective layer number to be 70 for Ti₃CN.

9 S6. Comparison of $\chi_{monolayer}^{(3)}$ values among various 2D materials.

10

Table S2. Comparison of $\chi_{monolayer}^{(3)}$ among various 2D materials.

Materials	λ [nm]	$\chi^{(3)}_{monolayer}$ [e.s.u.]	References
Ti ₃ CN	532	5.35×10-9	
Ti ₃ CN	914	5.41×10-9	this work
Ti ₃ CN	1064	5.19×10 ⁻⁹	
BP	914	7.28×10-9	
BP	1064	6.08×10-9	2
VP	914	2.11×10-9	3
VP	1064	1.81×10-9	
Ti ₃ C ₂ T _x	532	10-7	4
Ti ₃ C ₂ T _x	671	10-8	4
$Ti_3C_2T_x$	800	10-8	5
Ti ₃ C ₂ T _x	1064	10-7	5
Ti ₂ CT _x	1064	1.14×10 ⁻¹⁰	6
Nb ₂ C	400	2.43×10-9	7
Nb ₂ C	800	6.07×10 ⁻⁹	7
Graphene	532	10-7	2
MoS ₂	532	1.60×10 ⁻⁹	1

MoSe ₂	532	1.10×10 ⁻⁹	8
SnS	532/633	10-10	9
Bi ₂ Te ₃	400/800/1070	10-7	10
NiPS ₃	532	2.64×10-9	11

1 S7. Process of SSPM diffraction rings formation

Fig. S3. (a)-(d) Evolution of the ring number over time at 473 nm,532 nm, 721 nm and
1064 nm. Solid lines: fitting curves with one-exponential function. The dashed orange
lines denote the formation time.

6 S8. Calculation Method of Dielectric Constant for Ti₃CN

According to the first principles calculation based on DFT, we obtained the optical
properties of Ti₃CN through the Vienna Ab-initio Simulation Package (VASP)
program.¹² The exchange and correlation potentials were Perdew-Burke-Ernzerhof

1 method based on generalized gradient approximation (GGA). The plane wave cut-off 2 energy in the wave vector K space was set to be 700 eV, a Monkhorst-Pack k lattice 3 with a spacing of $2\pi \times 0.03$ Å⁻¹ was employed. When the total energy was stabilized 4 within 1×10^{-8} eV, the force on each atom of the cell after optimization was less than 5 0.015 eV/Å. Hence, the real part of dielectric function ε as a function of photon energy 6 is shown in Fig. S4.

8 Fig. S4. Real (ε) part of dielectric function obtained through calculation as a function
9 of photon energy for Ti₃CN.

10

7

11 References

- 12 1. Y. L. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. M. Zhao, Proc. Natl. Acad.
- 13 Sci. U. S. A., 2015, **112**, 11800-11805.
- 14 2. R. Wu, Y. L. Zhang, S. C. Yan, F. Bian, W. L. Wang, X. D. Bai, X. H. Lu, J. M.
- 15 Zhao, and E. G. Wang, Nano Lett., 2011, 11, 5159-5164.
- 16 3. X. D. Xu, M. Wang, Y. Q. Zhang, Q. F. Li, W. S. Niu, Y. F. Yang, J. M. Zhao, and
- 17 Y. L. Wu, Laser Photon. Rev., 2024, 18, 2300930.
- 18 4. L. M. Wu, X. T. Jiang, J. L. Zhao, W. Y. Liang, Z. J. Li, W. C. Huang, Z. T. Lin, Y.
- 19 Z. Wang, F. Zhang, S. B. Lu, Y. J. Xiang, S. X. Xu, J. Q. Li, and H. Zhang, Laser
- 20 Photon. Rev., 2018, 12, 1800215.

- 1 5. J. Li, Z. L. Zhang, J. Yi, L. L. Miao, J. Huang, J. R. Zhang, Y. He, B. Huang, C. J.
- 2 Zhao, Y. H. Zou, and S. C. Wen, Nanophotonics, 2020, 9, 2415-2424.
- 3 6. J. Yi, J. Li, S. H. Huang, L. Y. Hu, L. L. Miao, C. J. Zhao, S. C. Wen, V. N.
- 4 Mochalin, and A. M. Rao, InfoMat, 2020, **2**, 601-609.
- 5 7. S. Xiao, Y. L. He, Y. L. Dong, Y. D. Wang, L. Zhou, X. J. Zhang, Y. W. Wang,
- 6 and J. He, Front. Physics, 2021, 9, 674820.
- 7 8. W. H. Wang, Y. L. Wu, Q. Wu, J. J. Hua, and J. M. Zhao, Sci Rep, 2016, 6, 19637.
- 8 9. L. M. Wu, Z. J. Xie, L. Lu, J. L. Zhao, Y. Z. Wang, X. T. Jiang, Y. Q. Ge, F. Zhang,
- 9 S. B. Lu, Z. N. Guo, J. Liu, Y. J. Xiang, S. X. Xu, J. Q. Li, D. Y. Fan, and H. Zhang,
- 10 Adv. Opt. Mater., 2018, **6**, 1700985.
- 11 10. B. X. Shi, L. L. Miao, Q. K. Wang, J. Du, P. H. Tang, J. Liu, C. J. Zhao, and S. C.
- 12 Wen, Appl. Phys. Lett., 2015, **107**, 151101.
- 13 11. J. Li, W. S. Niu, X. D. Xu, M. Wang, Z. W. Xu, J. W. Cao, Y. Liu, J. M. Li, J. M.
- 14 Zhao, and Y. L. Wu, Opt. Express, 2025, **33**, 1044-1057.
- 15 12. P. E. Blochl, Phys. Rev. B., 1994, 50, 17953-17979.