Unique NiCo Bimetal-Boosting 98% CH₄ Selectivity and High

Catalysis Stability for Photothermal CO₂ Hydrogenation

Yubin Zheng^{a‡}, Zhe Lu^{b‡}, Zhisheng Shi^{c*}, Lu, Wang^b, Shuyuan Yang^d, Runzhi Cao^a, Gao Wa^{e*}, Xin Zhou ^{df*}, Yong Yang^g, Chong Sheng^a, Yong Zhou^{a,b,*} and Zhigang Zou^{a,b}

^a Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China. E-mail: zhouyong1999@nju.edu.cn.

^b School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China.

^c School of Chemical and Environmental Engineering, Anhui Polytechnic UniversityWuhu, Anhui, 241000, P. R. China. E-mail: shizhisheng@ahpu.edu.cn.

^d College of Environment and Chemical Engineering, Dalian University, Dalian 116622, P. R. China.

^e School of Physical Science and Technology, Tiangong University, Tianjin 300387, P.R. China. E-mail: gaowa@tiangong.edu.cn.

^f Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian 116029, P. R. China. Email: <u>xzhou@lnnu.edu.cn</u>.

^g School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. yychem@njust.edu.cn.

^{$\ddagger}These authors contributed equally to this work and should be considered co-first authors.$ </sup>

Figure S1. Photographic picture of photothermal catalytic reaction devices.

Figure S2. PXRD patterns of Ni-MOFNs, Co-MOFNs, and NiCo-MOFNs, as compared to the corresponding powder pattern.¹

Figure S3. SEM images of a) Ni-MOFNs, b) Co-MOFNs, and c) NiCo-MOFNs.

Figure S4. TEM image of NiCo-MOFNs.

Figure S5. TGA curve of a) Ni-MOFNs, b) Co-MOFNs, and c) NiCo-MOFNs in N_2 atmosphere with a heating rate of 5 °C min⁻¹.

Figure S6. PXRD patterns of Ni/C 、 Co/C 、 NiCo/C, as compared to the corresponding powder pattern (Ni, PDF#04-0850, and Co, PDF#15-0806).

Figure S7. Raman spectroscopy of the NiCo/C.

Figure S8. Particle size distribution of NiCo alloy nanoparticles in the NiCo/C.

Figure S9. Full XPS spectra of Ni/C, Co/C and NiCo/C.

Figure S10. XPS spectra of C 1s for Ni/C, Co/C and NiCo/C.

Figure S11. Mass spectra of ¹³CO (inset) produced over NiCo/C.

Figure S12. Temperature changes over Ni/C, Co/C and NiCo/C under light irradiation.

Figure S13. In situ DRIFTS spectra of NiCo/C catalyst a) under light irradiation, b) at 290 °C in dark, c) at 290 °C under light irradiation.

Figure S14. In situ DRIFTS spectra of a) Ni@C, b) Co@C catalysts at 290 °C under light irradiation.

Figure S15. Induced electric field distributions of monometallic and bimetallic catalysts (Wave vector direction: x; Direction of polarization: y).

Figure S16. Induced electric field distributions of monometallic and bimetallic catalysts (Wave vector direction: x; Direction of polarization: y).

Figure S17. Induced electric field distributions of monometallic and bimetallic catalysts (Wave vector direction: x; Direction of polarization: y).

Figure S18. The optimized geometry of participating intermediates on Ni (111). The blue, grey, red and white spheres represent Ni, C, O and H atoms, respectively.

Figure S19. The optimized geometry of participating intermediates on Co (111). The purple, grey, red and white spheres represent Co, C, O and H atoms, respectively.

Figure S20. The optimized geometry of participating intermediates on Ni-Co (111). The blue, purple, grey, red and white spheres represent Ni, Co, C, O and H atoms, respectively.

Catalysis	Light	External	Reactor	Pressure	Temperature	CO ₂ :H ₂	CH ₄ rate	Selectivity	Ref.
	source	heating	type	(MPa)	(°C)	rate	(mmol g ⁻¹	(%)	
		sources					h ⁻¹)		
Ru/SiO_2	300W Xe	Yes	Flow	0.1	300	1:6	35.1ª	99.9	2
	lamp								
8Ni/TiO ₂	375W IR	No	Flow	0.1	330	1:4	21.8 ^b	99.5	3
	Light								
8Ni/TiO ₂	300W Xe	No	Flow	0.1	198	1:4	6.3ª	72.3	3
	lamp								
Ir/Uio-66	200-1000nm	Yes	Flow	0.1	250	1:4	19.9 ^b	95.0	4
	300W Xe								
	lamp								
Ni@SiXNS-	-	Yes	Flow	0.1	300	1:4	100.0ª	90.0	5
EtOH									
Ru/TiO_2	500 W solar	Yes	Flow	0.1	300	1:3	69.5 ^b	-	6
	simulator								
Ni/Nb ₂ C	300W Xe	No	Batch/Flow	0.1	321	1:1	72.5 ^b	83%	7
	lamp								
Ru/H_xMoO_{3-y}	300W Xe	No	Flow	0.1	140	1:1	20.8 ^b	100	8
	lamp								
NiCo/C	300-2500nm	Yes	Flow	0.1	290	1:3	67.8 ^a	98.0	This
	300 W Xe						55.6 ^b		work
	lamp								
	0.1 W/cm^2								

Table S1. The comparison of catalytic activities with other reported catalysts for photo-thermal catalytic CO_2 hydromethanation

^a(mmol g_{metal}⁻¹ h⁻¹)

^b(mmol

gcatslyst⁻¹

h-1)

Entry	Species	Ni Eabs/eV	Co Eabs/eV	NiCo Eabs/eV
1	$CO_2(g) + * \rightarrow *CO_2$	0.60	0.56	0.45
2	$*CO_2 + *H \rightarrow *COOH$	-0.23	0.10	0.01
3	$*COOH + *H \rightarrow *CO + H_2O$	-0.81	-0.98	-0.82
4	$*CO + *H \rightarrow *CHO$	1.06	0.98	0.82
5	$*{\rm CHO} + *{\rm H} \rightarrow *{\rm CHOH}$	0.03	0.54	0.11
6	$*CHOH + *H \rightarrow *CH + H_2O$	-1.18	-1.53	-0.9
7	$^{*}\mathrm{CH} + ^{*}\mathrm{H} \rightarrow ^{*}\mathrm{CH}_{2}$	0.14	0.11	0.04
8	$^{*}\mathrm{CH}_{2}\mathrm{+}^{*}\mathrm{H} \rightarrow ^{*}\mathrm{CH}_{3}$	0.04	-0.36	-0.52
9	$^{*}\mathrm{CH}_{3}\mathrm{+}~^{*}\mathrm{H} \rightarrow ^{*}\mathrm{CH}_{4}$	-0.49	-0.28	-0.24
10	$^{\ast}\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{4}(g) + ^{\ast}$	-0.33	0.06	0.06

Table S2. Energy barriers of elementary steps in CO_2 hydro-methanation reactions on Ni, Co and NiCo(111).

- S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao and Z. Tang, *Nature Energy*, 2016, 1, 16184.
- 2. C. Kim, S. Hyeon, J. Lee, W. D. Kim, D. C. Lee, J. Kim and H. Lee, *Nature Communications*, 2018, **9**, 3027.
- Q. Li, Y. Gao, M. Zhang, H. Gao, J. Chen and H. Jia, *Applied Catalysis B: Environmental*, 2022, 303, 120905.
- 4. Y. Tang, Z. Yang, C. Guo, H. Han, Y. Jiang, Z. Wang, J. Liu, L. Wu and F. Wang, *Journal of Materials Chemistry A*, 2022, **10**, 12157-12167.
- X. Yan, W. Sun, L. Fan, P. N. Duchesne, W. Wang, C. Kübel, D. Wang, S. G. H. Kumar, Y. F. Li, A. Tavasoli, T. E. Wood, D. L. H. Hung, L. Wan, L. Wang, R. Song, J. Guo, I. Gourevich, F. M. Ali, J. Lu, R. Li, B. D. Hatton and G. A. Ozin, *Nature Communications*, 2019, **10**, 2608.
- 6. C. Wang, S. Fang, S. Xie, Y. Zheng and Y. H. Hu, *Journal of Materials Chemistry A*, 2020, **8**, 7390-7394.
- Z. Wu, C. Li, Z. Li, K. Feng, M. Cai, D. Zhang, S. Wang, M. Chu, C. Zhang, J. Shen, Z. Huang, Y. Xiao, G. A. Ozin, X. Zhang and L. He, *ACS Nano*, 2021, 15, 5696-5705.
- 8. H. Ge, Y. Kuwahara, K. Kusu, Z. Bian and H. Yamashita, *Applied Catalysis B: Environmental*, 2022, **317**, 121734.