Supporting Information

Rational synthesis of carbon-rich hollow carbon nitride spheres for photocatalytic H₂O₂ production and Cr (VI) reduction

Yong Hu, ^a Zhenchun Yang, ^b Dandan Zheng, ^{*a} Wandong Xing^{*b}, and Guigang Zhang^{*}

 ^{a.} College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, PR China
 ^{b.} State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China

1. Characterization

The morphology of the samples was characterized with field emission scanning microscopy (SU-8010, Hitachi) and TEM FEI (Tecnai 20 FEG). The powder X-ray diffraction patterns were obtained with a Bruker D8 Advance diffractometer with Cu-K α 1 radiation (λ = 1.5406 Å). Fourier transform infrared (FT-IR) spectroscopy was performed on a Nicolet IS50 FITR spectrometer with a scanning range of 4000 to 500 cm⁻¹ at room temperature. The X-ray photoelectron spectroscopy (XPS) measurements were performed in a Thermo ESCALAB250 instrument with a monochromatic Al-K α line source (200 W). Nitrogen adsorption-desorption isotherms were carried out on a Micromeritics ASAP3020 specific surface area and porosity analyzer at 77.2K. The UV-Vis diffuse reflectance spectroscopy (DRS) was performed on a Varian Cary 500 scanning UV-Vis system. Photoluminescence (PL) spectra were performed in a Horiba Fluorolog-3 fluorescence (EPR) spectra were recorded using a Bruker model A300 spectrometer. Kelvin probe force microscopy (KPFM) measurements was completed at SPM-9700 surface probe system (Shimadzu, Japan).

2 Photocatalytic activity tests

2. 1 Photocatalytic H₂O₂ production

An amount of 25 mg of photocatalyst was added to 50 mL of an aqueous solution containing 10 vol% ethanol and then dispersed by sonication for 10 min. The photoreactor was irradiated with a 300w xenon lamp at 25 °C and 1 atm, and oxygen was supplied by an oxygen bag. The suspension was sampled at set time intervals for analyzing H_2O_2 production properties. The DPD/POD method and titanium sulfate method reported elsewhere were used to determine low and high concentrations of hydrogen peroxide, respectively. The DPD/POD method is based on the horseradish peroxidase (POD) catalyzed oxidation of N, N-diethyl-phenylenediamine (DPD) by hydrogen peroxide, and the concentration of hydrogen peroxide was determined by UV spectrophotometry at 552 nm. The titanium sulfate method utilizes titanium sulfate and hydrogen peroxide to form a yellow titanium peroxide complex, and the concentration of hydrogen peroxide is measured

by UV spectrophotometer at 407nm. Calibration curves were prepared separately using a series of H_2O_2 solutions of known concentration.

2. 2 Photocatalytic reduction of Cr (VI)

An amount of 25 mg of photocatalyst was added to 50 mL of an aqueous solution containing 10 vol% ethanol and then dispersed by sonication for 10 min. The photoreactor was irradiated with a 300w xenon lamp at 25 °C and 1 atm, and the reduction performance of Cr (VI) was determined under nitrogen and air, respectively. The suspension was sampled at set time intervals, and the photocatalytic Cr (VI) reduction rate was determined by the diphenylcarbazide method. Diphenylcarbazide spectrophotometry is a method that utilizes acidic conditions to generate a purple-red complex between hexavalent chromium ions and diphenylcarbazide, and determines the content of Cr (VI) by UV spectrophotometry at 554nm.

2. 3 Apparent quantum yield (AQY)

12.5 mg of catalyst was dispersed in 25 ml of aqueous ethanol (10 vol.%) and ultrasonically dispersed for 10 min. The dispersed mixture was placed on a stirrer with an oxygen bag to keep the catalyst suspended in the solution. Cover the reactor with a fixed-area piece of tin foil, reserving only a 9 cm² window. The reaction solution was irradiated with different wavelengths of light through a reserved window for 15 min, and a certain amount of the reaction solution was taken and filtered through a 0.22um polytetrafluoroethylene filter to detect the concentration of hydrogen peroxide. The apparent quantum yield was then calculated using the following equation.

The apparent quantum yield (AQY) is calculated in Equation:

$$AQY = \frac{\frac{2 \times Amount \ of \ H_2 O_2 \times E_\lambda \times N_A}{P_{\lambda \times a \times t}} \times 100\%$$

 P_{λ} is the optical power density irradiated to the reactor surface (mW cm⁻²); *a* is the open window area of the reactor (0.0001 m²); *t* is the light irradiation time (s); E_{λ} is the energy of photons in each band; N_{A} is Avogadro's constant (6.02 × 10²³); *A* is the absorbance of the mixture at different wavelengths.

3. Photoelectrochemical tests

Electrochemical measurements were recorded by a BioLogic VSP-300 electrochemical system with a three-electrode system. The Ag/AgCl electrode (3 M KCl) is used as a reference electrode, and a Pt electrode is used as a counter electrode. For the working electrode, the fluorine-doped tin oxide (FTO) glass was cleaned by ultrasonication in ethanol for 10 min and then dried. The conductive surface of the FTO glass was covered with white tape, leaving only the fixed area. A 5 mg sample was sonicated for 1 h to

disperse in the suspension of 0.3 mL ETOH and 0.1 mL H₂O, and then the mixture was dropped on the exposed FTO conductive surface. After natural drying in air, the working electrode was further dried at 100 °C for 2 h. The tape was then removed and the uncoated portion was coated with epoxy resin. A 0.2 mol·L⁻¹ Na₂SO₄ aqueous solution (pH=6.8) was chosen as the supporting electrolyte.

spectroscopy						
Sample	C-N=C (%)	C-C (%)	C-NH/C=N (%)	C (%)	N (%)	C/N (%)
HCNS _{G30}	51.35	35.25	9.39	36.36	42.8	0.849
HCNS	68.2	27.01	4.79	32.9	53.3	0.617

 Table S1. Chemical component analysis of the samples by X-ray photoelectron spectroscopy

Table S2. Chemical component analysis of the samples by elemental analysis

Sample	C (%)	N (%)	H (%)	C/N (%)
HCNS _{G30}	52.81	31.48	2.99	0.596
HCNS	55.82	31.57	2.59	0.565

Photocatalyst	Stability	Quantum yields	Scalability	H_2O_2 production µmol·h ⁻¹ ·g ⁻¹	Reference
C, O co-doped polymeric g- C ₃ N ₄	6 times Cycle	420nm 7%	CO ₂ reduction	120	1
P,N Co- Dopedg-C3N4 HollowSphere	11 times Cycle	-	-	4568	2
Porous carbon-doped g-C ₃ N ₄	5 times Cycle	-	BPA Degradation	748.8	3
C-doped g- C_3N_4	5 times Cycle	-	-	3524.4	4
Defected carbon doped g-C ₃ N ₄	4 times Cycle	-	4-CP Degradation	179.82 with 2h in pure water	5
CCN-MCAU- DMSO	5 times Cycle	-	-	1119.37	6
CCN-SA/T-KF	5 times Cycle	-	-	1603	7
CNT	4 times Cycle	400nm 22%	tetracycline degradation	2480	8
HCNS _{G30}	5 times Cycle	400nm 12.8 % and 420nm 4.1%	Cr(VI) Reduction	8811.2	This Work

Photocatalyst	Stability	Quantum	Scalability	arious photocatalysts Cr(VI) reduction	Reference
	-	yields		Efficiency	
Bi ₁₂ O ₁₇ Cl ₂ /Zn- HMT	5 times cycle	-	TC-HCI degradation	150 min 65%	9
CdS/HPA-2/g- C ₃ N ₄	4 times cycle	-	RhB degradation	20 min 100%	10
In_2S_3/Gd_2O_3	5 times cycle	-	OTC degradation	55 min 96.3%	11
rGO@ZnAITi- LDO	-	-	TC-HCI degradation	210min 80%	12
Amine- CdS/MoO $_3$	5 times cycle	-	Hydrogen Production	40 min 74%	13
N-deficient g- C ₃ N ₄	-	-	Hydrogen Production	150 min 75%	14
g- C ₃ N₄/BP/MoS₂	5 times cycle	-	Hydrogen Production	25min 100%	15
CdS/CdO@Au	5 times cycle	-	Hydrogen Production	20 min 98%	16
CoSx/CdS	5 times cycle	-	-	30min 99.8%	17
MoO₃@ZIF-8	4 times cycle	-	-	40 min 96%	18
g-C₃N₄@MIL- 53(Fe)	4 times cycle	-	-	180min 99%	19

 Table S4. summary of Cr(VI) reduction over various photocatalysts

HCNS _{G30}	5 times Cycle	400nm 12.8 % and 420nm	H ₂ O ₂ production	10min 100%	This Work
		4.1%			

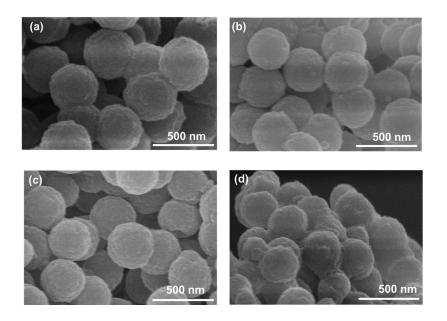


Fig. S1. (a-d) Scanning electron microscope images of HCNS_{G10}, HCNS_{G20}, HCNS_{G50}, HCNS_{G80}.

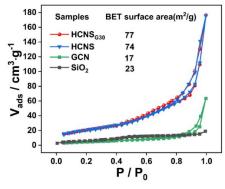
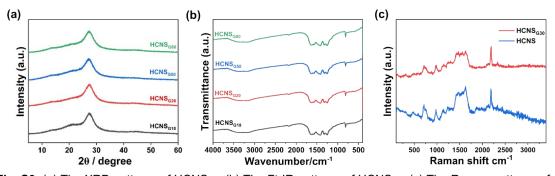
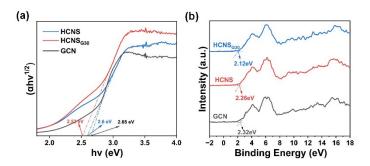
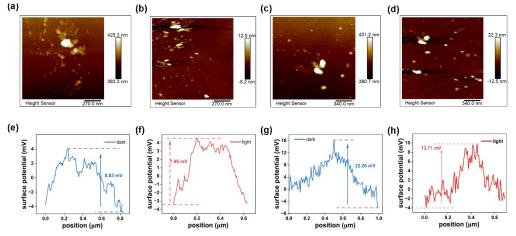
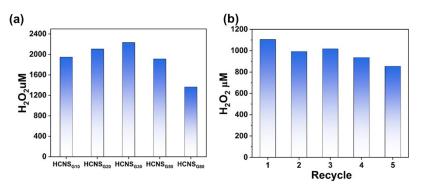


Fig. S2. Nitrogen adsorption-desorption isotherms of SiO₂, GCN, HCNS HCNS_{G30}


Fig. S3. (a) The XRD patterns of $HCNS_{Gx}$. (b) The Ft-IR patterns of $HCNS_{Gx}$. (c) The Raman patterns of HCNS and $HCNS_{G30}$.

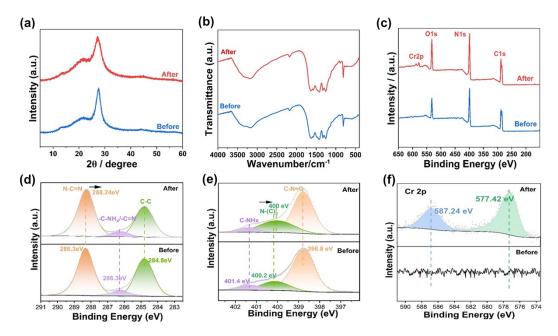
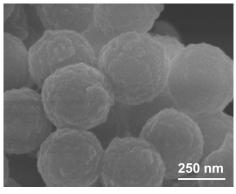
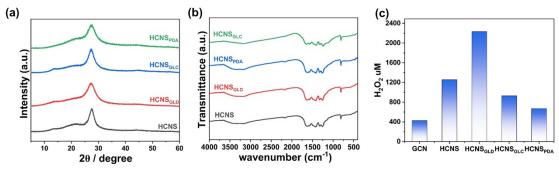
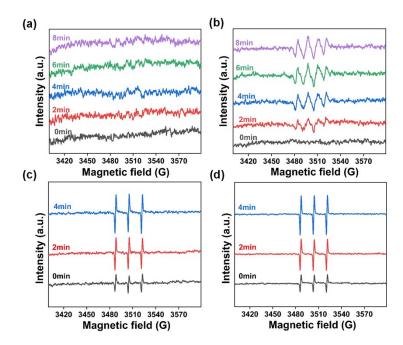
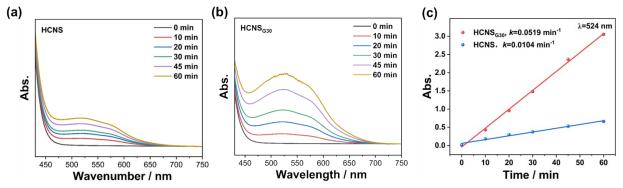

Fig. S4. (a) The band gap energy of GCN, HCNS, $HCNS_{G30}$. (b) Valence band X-ray photoelectron spectroscopy.

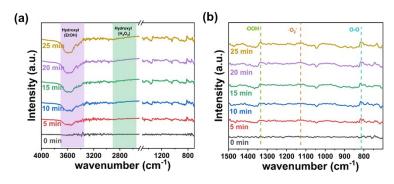
Fig S5. KPFM images of, HCNS under (a) darkness and (b) 400 nm LED illumination, HCNS_{G30} under (c) darkness and (d) 400 nm LED illumination. and their corresponding potential diagrams (e-h).

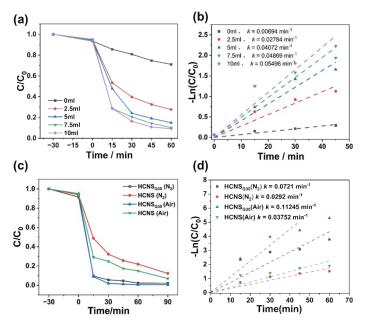
Fig. S6. (a) Photocatalytic H_2O_2 yields of $HCNS_{Gx}$ (x = 0, 10, 20, 30, 50, 80). (b) Stability test of the photocatalytic H_2O_2 production reaction of $HCNS_{G30}$.

Fig. S7. The patterns of HCNS_{G30} before and after the reaction (a) XRD, (b) Ft-IR. (c) Survey XPS spectra, High-resolution XPS of (d) C1 s, (e) N1 s, (f) Cr2p of HCNS_{G30} before and after the reaction.


Fig. S8. The SEM image of $HCNS_{G30}$ after the reaction.


Fig. S9. (a) The XRD pattern and (b) FT-IR spectra of different monomers of its C content. (c) Photocatalytic H_2O_2 yields of different monomers of its C content.


Fig. S10. Photocatalytic production of H_2O_2 mechanism study, superoxide radicals trapped by DMPO of (a) HCNS, (b) HCNS_{G30}, singlet oxygen trapped by TEMP of (c) HCNS, (d) HCNS_{G30}.

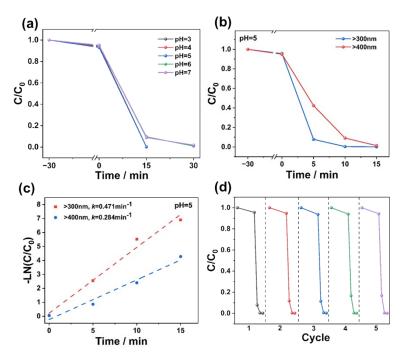

Fig. S11 UV–vis absorption spectra of the NBT solution with the presence of (a) HCNS, (b) $HCNS_{G30}$ under the light irradiation. (c) UV–vis absorption spectra (524nm) of the NBT solution with the presence of HCNS and $HCNS_{G30}$ under the light irradiation.

Fig. S12 The *in-situ* DRIFT spectra of the HCNS for, (a) full spectrum (4000-700cm⁻¹), (b) the spectrum from 1500-700cm⁻¹.

Fig. S13. (a) Photocatalytic reduction rates of Cr (VI) by $HCNS_{G30}$ under diverse content of hole scavenger. (b) First-order reaction kinetics of photocatalytic reduction of Cr (VI) by $HCNS_{G30}$ under diverse content of hole scavenger. (c) photocatalytic reduction rates of Cr (VI) by HCNS and $HCNS_{G30}$ under diverse atmospheres, (d) First-order reaction kinetics of photocatalytic reduction of Cr (VI) by HCNS and $HCNS_{G30}$ under $HCNS_{G30}$ under nitrogen and air conditions.

Fig. S14. (a) Photocatalytic reduction rates of Cr (VI) by $HCNS_{G30}$ under diverse pH. (b) photocatalytic reduction rates of Cr (VI) by HCNS and $HCNS_{G30}$ under diverse light intensity, (c) First-order reaction kinetics of photocatalytic reduction of Cr (VI) by HCNS and $HCNS_{G30}$ under diverse light intensity. (d) Stability test of the photocatalytic Cr(VI) reduction reaction of $HCNS_{G30}$.

- 1. S. Samanta, R. Yadav, A. Kumar, A. Kumar Sinha and R. Srivastava, *Applied Catalysis B: Environmental*, 2019, **259**, 118054.
- 2. X. Dang, X. Cui, H. Zhang, X. Chen and H. Zhao, ACS Sustainable Chemistry & Engineering, 2023, **11**, 13096-13107.
- 3. T. Li, X. Zhang, C. Hu, X. Li, P. Zhang and Z. Chen, *Journal of Environmental Chemical Engineering*, 2022, **10**(3), 107116.
- 4. N. A. Nordin, M. A. Mohamed, N. S. N. Hasnan, S. F. M. Yusoff, M. S. Mastuli, T. Sugiura and K. Manseki, *Journal of Sol-Gel Science and Technology*, 2024: 1-20.
- 5. Z. Zhang, P. Luo, L. Gan, Y. Zhao, X. Wang, H. Peng and J. Peng, *Applied Surface Science*, 2024, **649**, 159118.
- 6. N. A. Nordin, M. A. Mohamed, M. S. Mastuli, S. F. Mohd Yusoff, T. Sugiura and K. Manseki, *Journal of Industrial and Engineering Chemistry*, 2024, **135**, 197-212.
- 7. N. S. N. Hasnan, M. A. Mohamed, N. A. Nordin, W. N. R. Wan Ishak and M. B. Kassim, *Carbohydrate Polymers*, 2023, **317**, 121096.
- 8. J. Chen, W. Gao, Y. Lu, F. Ye, S. Huang, Y. Peng, X. Yang, Y. Cai, J. Qu and J. Hu, ACS Applied Nano Materials, 2023, **6**, 3927-3935.
- 9. Q. Jiang, H. Sun, S. Zhou, C. Liu, Z. Zhang, H. Hu, H. Xie, C. Li, Z. Wei and Y. Kong, *Journal of Alloys and Compounds*, 2023, **947**, 169469.
- 10. C. Liang, M. Cui, W. Zhao, L. Dong, S. Ma, X. Liu, D. Wang, Z. Jiang and F. Wang, *Chemosphere*, 2022, **305**, 135315.
- 11. M. Murugalakshmi, G. Mamba and V. Muthuraj, *Applied Surface Science*, 2020, **527**, 146890.
- 12. J. Ye, J. Liu, Z. Huang, S. Wu, X. Dai, L. Zhang and L. Cui, *Chemosphere*, 2019, **227**, 505-513.
- 13. S. Wang, X. Zhao, H. Muhammad Adeel Sharif, Z. Chen, Y. Chen, B. Zhou, K. Xiao, B. Yang and Q. Duan, *Chemical Engineering Journal*, 2021, **406**, 126849.
- 14. X. Ma, Z. Zhang, C. Yu, Q. Fan and L. Wei, *Materials Research Bulletin*, 2020, **129**, 110909.
- 15. A. Meng, W. Tian, H. Yang, X. Wang, X. Wang and Z. Li, *Journal of Hazardous Materials*, 2021, **413**, 125400.
- 16. M. Saha, S. Ghosh and S. K. De, *Catalysis Today*, 2020, **340**, 253-267.
- 17. L. Zhang, P. Li, L. Feng, X. Chen, J. Jiang, S. Zhang, A. Zhang, G. Chen and H. Wang, *Chemical Engineering Journal*, 2020, **397**, 129519.
- 18. Y. Zhang and S.-J. Park, *Applied Catalysis B: Environmental*, 2019, **240**, 92-101.
- 19. W. Huang, N. Liu, X. Zhang, M. Wu and L. Tang, *Applied Surface Science*, 2017, **425**, 107-116.